1-3hit |
Guo-Ming SUNG Ying-Tzu LAI Yueh-Hung HOU
This paper presents a fully differential third-order (2-1) switched-current (SI) cascaded delta-sigma modulator (DSM), with an analog error cancellation logic circuit, and a digital decimation filter that is fabricated using 0.18-µm CMOS technology. The 2-1 architecture with only the quantizer input being fed into the second stage is introduced not only to reduce the circuit complexity, but also to be implemented easily using the switched-current approach. Measurements reveal that the dominant error is the quantization error of the second one-bit quantizer (e2). This error can be eliminated using an analog error cancellation logic circuit. In the proposed differential sample-and-hold circuit, low input impedance is presented with feedback and width-length adjustment in SI feedback memory cell (FMC); and that a coupled differential replicate (CDR) common-mode feedforward circuit (CMFF) is used to compensate the error of the current mirror. Also, measurements indicate that the signal-to-noise ratio (SNR), dynamic range (DR), effective number of bits (ENOB), power consumption and chip size are 67.3 dB, 69 dB, 10.9 bits, 12.3 mW, and 0.200.21 mm2, respectively, with a bandwidth of 40 kHz, a sampling rate of 10.24 MHz, an OSR of 128 and a supply voltage of 1.8 V.
Haruhiro HASEGAWA Tatsunori HASHIMOTO Shuichi NAGASAWA Satoru HIRANO Kazunori MIYAHARA Youichi ENOMOTO
We investigated single flux quantum sinc filters with multistage decimation structure in order to realize high-speed sinc filter operation. Second- and third-order (k=2, 3) sinc filters with a decimation factor N=2 were designed and confirmed their proper operations. These sinc filters with N=2 are utilized as elementary circuit blocks of our multistage decimation sinc filters with N=2M, where M indicates the number of the stage of the decimation. As an example of the multistage decimation filter, we designed a k=2, N=4 sinc filter which was formed from a two-stage decimation structure using k=2, N=2 sinc filters, and confirmed its proper operation. The k=2, N=4 sinc filter consisted of 1372 Josephson junctions with the power consumption of 191 µW.
Kazunori MIYAHARA Shuichi NAGASAWA Haruhiro HASEGAWA Tatsunori HASHIMOTO Hideo SUZUKI Youichi ENOMOTO
In this paper, we describe our SFQ circuit design and measurement carried out in SRL-ISTEC. We are studying an oversampling sigma-delta modulator and a counter-type decimation filter with multistage structure for developing AD converters for software-defined radio application. We are also developing a superconducting memory, whose peripheral circuits are constructed with SFQ circuits.