The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] design procedure(3hit)

1-3hit
  • Novel Design Procedure for MOSFET Class E Oscillator

    Hiroyuki HASE  Hiroo SEKIYA  Jianming LU  Takashi YAHAGI  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2241-2247

    This paper presents a novel design procedure for class E oscillator. It is the characteristic of the proposed design procedure that a free-running oscillator is considered as a forced oscillator and the feedback waveform is tuned to the timing of the switching. By using the proposed design procedure, it is possible to design class E oscillator that cannot be designed by the conventional one. By carrying out two circuit experiments, we find that the experimental results agree with the calculated ones quantitatively, and show the validity of the proposed design procedure. One experimental measured power conversion efficiency is 90.7% under 6.8 W output power at an operating frequency 2.02 MHz, the other is 89.7% under 2.8 W output power at an operating frequency 1.97 MHz.

  • Development of Module Generators from Extracted Design Procedures--Application to Analog Device Generation--

    Takashi MORIE   Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER

      Vol:
    E78-A No:2
      Page(s):
    160-168

    This paper proposes a new approach for the development of a module generator that can parameterize both the size and the structure of layout. The proposed method acquires a design procedure from the design process of a designer, and reuses it to synthesize new layouts with different input parameters that affect the size or the structure of layout. In this method, a designer creates a module layout on a layout editor instead of writing a program. From his design process, a procedure to synthesize the layout is automatically derived. Then, it is generalized so that it could be valid under different values of input parameters. The generalized procedure is independent of design rules, and is capable of synthesizing error-free module layouts of different size and structure. Also, the procedure includes designer's requirements on how the layout should be designed. The experimental results of applying the approach for developing generators of analog device components show effectiveness of our approach.

  • A Symbolic Analysis Method Using Signal Block Diagrams and Its Application to Bias Synthesis of Analog Circuits

    Hideyuki KAWAKITA  Seijiro MORIYAMA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:3
      Page(s):
    502-509

    In this paper, an efficient and robust circuit parameter determination method suitable for analog circuit synthesis is presented. The method uses block diagram representation of circuits as implicit design knowledge. Circuit parameter determination is carried out by propagating known values along signal flow in the block diagram. The circuit parameter determination using signal propagation performs successfully when unknown circuit parameters can be solved in one way. However, when the block diagram involves implicit calculation, the propagation stops before all unknown parameters are determined. In order to cope with this problem, we introduced a method that employs a symbolic analysis technique combined with a numerical method. When the propagation of known values stops, one of unknown signals is selected, a unique symbol is assigned to the selected signal, and the signal propagation is restarted. This operation is repeated until there is no unknown signal. When the symbol propagation reaches the signal where the signal value is already set, one nonlinear equation for the signal is obtained by equating both signal values. It can be solved by a numerical method, such as Newton's method. The parameter determination method using procedural description is superior to the optimization based method because it is straightforward to incorporate design knowhow in the description. However, it is burdensome for designers to develop design procedures for each circuit to be synthesized. Because the block diagram based calculation method can be used as subroutine calls during the design procedure development, it simplifies the design procedural description and lowers the burden of designers. The method was applied to the element value determination of bias circuits to demonstrate its effectiveness.