1-3hit |
Takatsugu FUKUSHIMA Naobumi MICHISHITA Hisashi MORISHITA Naoya FUJIMOTO
Two kinds of composite right/left-handed coaxial lines (CRLH CLs) are designed for an antenna element. The dispersion relations of the infinite periodic CRLH CLs are designed to occur -1st resonance at around 700 MHz, respectively. The designed CRLH CLs comprise a monopole and a choke structure for antenna elements. To verify the resonant modes and frequencies, the monopole structure, the choke structure, and the antenna element which is combined the monopole and the choke structures are simulated by eigenmode analysis. The resonant frequencies correspond to the dispersion relations. The monopole and the choke structures are applied to the coaxially fed antenna. The proposed antenna matches at 710 MHz and radiates. At the resonant frequency, the total length of the proposed antenna which is the length of the monopole structure plus the choke structure is 0.12 wavelength. The characteristics of the proposed antenna has been compared with that of the conventional coaxially fed monopole antenna without the choke structure and the sleeve antenna with the quarter-wavelength choke structure. The radiation pattern of the proposed antenna is omnidirectional, the total antenna efficiency is 0.73 at resonant frequencies, and leakage current is suppressed lesser than -10 dB at resonant frequency. The propose antenna is fabricated and measured. The measured |S11| characteristics, radiation patterns, and the total antenna efficiency are in good agreement with the simulated results.
Yuya ONO Takuichi HIRANO Kenichi OKADA Jiro HIROKAWA Makoto ANDO
In this paper we present eigenmode analysis of the propagation constant for a microstrip line with dummy fills on a Si CMOS substrate. The effect of dummy fills is not negligible, particularly in the millimeter-wave band, although it has been ignored below frequencies of a few GHz. The propagation constant of a microstrip line with a periodic structure on a Si CMOS substrate is analyzed by eigenmode analysis for one period of the line. The calculated propagation constant and characteristic impedance were compared with measured values for a chip fabricated by the 0.18 µm CMOS process. The agreement between the analysis and measurement was very good. The dependence of loss on the arrangement of dummy fills was also investigated by eigenmode analysis. It was found that the transmission loss becomes large when dummy fills are arranged at places where the electromagnetic field is strong.
Anis AHMED Ryuichi KOYA Osami WADA Ming WANG Ryuji KOGA
To evaluate the radial eigenmode field distributions and the resonance wavelengths of axially symmetric pillbox resonator, a numerical method is described which is based on the FE-BPM expression in cylindrical coordinates. Under the weakly guiding approximation, we solve Fresnel equation and can get a fairly accurate result. By using effective index method, 3-D pillbox guiding structure is reduced to 2-D one which is then used for the analysis. One advantage of this method is that it is applicable for the axially symmetric optical waveguides with arbitrary index distribution. The validity of this method is checked by comparing the results of this method with those of the analytical ones. This method is applied for the evaluation of the coupling properties of a coupled structure consisting of a pillbox resonator and a curved waveguide placed outside the pillbox. This coupled structure has a good prospect to be used as optical wavelength filter. By varying the separation distance between the pillbox and the outer curved waveguide, the power transfer due to coupling is determined near the resonance wavelength 0.9 µm.