The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] energy function(12hit)

1-12hit
  • The Improvement of the Processes of a Class of Graph-Cut-Based Image Segmentation Algorithms

    Shengxiao NIU  Gengsheng CHEN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/09/14
      Vol:
    E99-D No:12
      Page(s):
    3053-3059

    In this paper, an analysis of the basic process of a class of interactive-graph-cut-based image segmentation algorithms indicates that it is unnecessary to construct n-links for all adjacent pixel nodes of an image before calculating the maximum flow and the minimal cuts. There are many pixel nodes for which it is not necessary to construct n-links at all. Based on this, we propose a new algorithm for the dynamic construction of all necessary n-links that connect the pixel nodes explored by the maximum flow algorithm. These n-links are constructed dynamically and without redundancy during the process of calculating the maximum flow. The Berkeley segmentation dataset benchmark is used to prove that this method can reduce the average running time of segmentation algorithms on the premise of correct segmentation results. This improvement can also be applied to any segmentation algorithm based on graph cuts.

  • Player Tracking in Far-View Soccer Videos Based on Composite Energy Function

    Kazuya IWAI  Sho TAKAHASHI  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:7
      Page(s):
    1885-1892

    In this paper, an accurate player tracking method in far-view soccer videos based on a composite energy function is presented. In far-view soccer videos, player tracking methods that perform processing based only on visual features cannot accurately track players since each player region becomes small, and video coding causes color bleeding between player regions and the soccer field. In order to solve this problem, the proposed method performs player tracking on the basis of the following three elements. First, we utilize visual features based on uniform colors and player shapes. Second, since soccer players play in such a way as to maintain a formation, which is a positional pattern of players, we use this characteristic for player tracking. Third, since the movement direction of each player tends to change smoothly in successive frames of soccer videos, we also focus on this characteristic. Then we adopt three energies: a potential energy based on visual features, an elastic energy based on formations and a movement direction-based energy. Finally, we define a composite energy function that consists of the above three energies and track players by minimizing this energy function. Consequently, the proposed method achieves accurate player tracking in far-view soccer videos.

  • Design of FIR Digital Filters Using Hopfield Neural Network

    Yue-Dar JOU  Fu-Kun CHEN  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:2
      Page(s):
    439-447

    This paper is intended to provide an alternative approach for the design of FIR filters by using a Hopfield Neural Network (HNN). The proposed approach establishes the error function between the amplitude response of the desired FIR filter and the designed one as a Lyapunov energy function to find the HNN parameters. Using the framework of HNN, the optimal filter coefficients can be obtained from the output state of the network. With the advantages of local connectivity, regularity and modularity, the architecture of the proposed approach can be applied to the design of differentiators and Hilbert transformer with significantly reduction of computational complexity and hardware cost. As the simulation results illustrate, the proposed neural-based method is capable of achieving an excellent performance for filter design.

  • Stability Boundaries Analysis of Electric Power System with DC Transmission Based on Differential-Algebraic Equation System

    Yoshihiko SUSUKI  Takashi HIKIHARA  Hsiao-Dong CHIANG  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2339-2346

    This paper discusses stability boundaries in an electric power system with dc transmission based on a differential-algebraic equation (DAE) system. The DAE system is derived to analyze transient stability of the ac/dc power system: the differential equation represents the dynamics of the generator and the dc transmission, and the algebraic equation the active and reactive power relationship between the ac system and the dc transmission. In this paper complete characterization of stability boundaries of stable equilibrium points in the DAE system is derived based on an energy function for the associated singularly perturbed (SP) system. The obtained result completely describes global structures of the stability boundaries in solution space of the DAE system. In addition the characterization is confirmed via several numerical results with a stability boundary.

  • A Method for Solving Optimization Problems with Equality Constraints by Using the SPICE Program

    Jun GUO  Tetsuo NISHI  Norikazu TAKAHASHI  

     
    PAPER-Optimization and Control

      Vol:
    E86-A No:9
      Page(s):
    2325-2332

    Analog Hopfield neural networks (HNNs) have so far been used to solve many kinds of optimization problems, in particular, combinatorial problems such as the TSP, which can be described by an objective function and some equality constraints. When we solve a minimization problem with equality constraints by using HNNs, however, the constraints are satisfied only approximately. In this paper we propose a circuit which rigorously realizes the equality constraints and whose energy function corresponds to the prescribed objective function. We use the SPICE program to solve circuit equations corresponding to the above circuits. The proposed method is applied to several kinds of optimization problems and the results are very satisfactory.

  • Some Characteristics of Higher Order Neural Networks with Decreasing Energy Functions

    Hiromi MIYAJIMA  Shuji YATSUKI  Michiharu MAEDA  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1624-1629

    This paper describes some dynamical properties of higher order neural networks with decreasing energy functions. First, we will show that for any symmetric higher order neural network which permits only one element to transit at each step, there are only periodic sequences with the length 1. Further, it will be shown that for any higher order neural network, with decreasing energy functions, which permits all elements to transit at each step, there does not exist any periodic sequence with the length being over k + 1, where k is the order of the network. Lastly, we will give a characterization for higher order neural networks, with the order 2 and a decreasing energy function each, which permit plural elements to transit at each step and have periodic sequences only with the lengh 1.

  • A Recognition Method of Facility Drawings and Street Maps Utilizing the Facility Management Database

    Chikahito NAKAJIMA  Toshihiro YAZAWA  

     
    PAPER-Document Recognition and Analysis

      Vol:
    E79-D No:5
      Page(s):
    555-560

    This paper proposes a new approach for inputting handwritten Distribution Facility Drawings (DFD) and their maps into a computer automatically by using the Facility Management Database (FMD). Our recognition method makes use of external information for drawing/map recognition. It identifies each electric-pole symbol and support cable symbol on drawings simply by consulting the FMD. Other symbols such as transformers and electric wires can be placed on drawings automatically. In this positioning of graphic symbols, we present an automatic adjustment method of a symbol's position on the latest digital maps. When a contradiction is unsolved due to an inconsistency between the content of the DFD and the FMD, the system requests a manual feedback from the operator. Furthermore, it uses the distribution network of the DFD to recognize the street lines on the maps which aren't computerized. This can drastically reduce the cost for computerizing drawings and maps.

  • Edge Detection Using Neural Network for Non-uniformly Illuminated Images

    Md. Shoaib BHUIYAN  Hiroshi MATSUO  Akira IWATA  Hideo FUJIMOTO  Makoto SATOH  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E79-D No:2
      Page(s):
    150-160

    Existing edge detection methods provide unsatisfactory results when contrast changes largely within an image due to non-uniform illumination. Koch et al. developed an energy function based upon the Hopfield neural network, whose coefficients were fixed by trial and error, and remain constant for the entire image, irrespective of the differences in intensity level. This paper presents an improved edge detection method for non-uniformly illuminated images. We propose that the energy function coefficients for an image with inconsistent illumination should not remain fixed, rather should vary as a second-order function of the intensity differences between pixels, and actually use a schedule of changing coefficients. The results, compared with those of existing methods, suggest a better strategy for edge detection depending upon both the dynamic range of the original image pixel values as well as their contrast.

  • An Auto-Correlation Associative Memory which Has an Energy Function of Higher Order

    Sadayuki MURASHIMA  Takayasu FUCHIDA  Toshihiro IDA  Takayuki TOYOHIRA  Hiromi MIYAJIMA  

     
    PAPER-Neural Networks

      Vol:
    E78-A No:3
      Page(s):
    424-430

    A noise tolerant auto-correlation associative memory is proposed. An associated energy function is formed by a multiplication of plural Hopfield's energy functions each of which includes single pattern as its energy minimum. An asynchronous optimizing algorithm of the whole energy function is also presented based on the binary neuron model. The advantages of this new associative memory are that the orthogonality relation among patterns does not need to be satisfied and each stored pattern has a large basin of attraction around itself. The computer simulations show a fairly good performance of associative memory for arbitrary pattern vectors which are not orthogonal to each other.

  • Neural Networks for Digital Sequential Circuits

    Hiroshi NINOMIYA  Hideki ASAI  

     
    LETTER-Neural Networks

      Vol:
    E77-A No:12
      Page(s):
    2112-2115

    In this letter an SR-latch circuit using Hopfield neural networks is introduced. An energy function suited for a neural SR-latch circuit is defined for which the global convergence is guaranteed. We also demonstrate how to compose master-slave (M/S) SR- and JK-flip flops of novel SR-latch circuits, and further an asynchronous binary counter of M/S JK-flip flops. Computer simulations are included to illustrate how each presented circuit operates.

  • A Neural Net Approach to Discrete Walsh Transform

    Takeshi KAMIO  Hiroshi NINOMIYA  Hideki ASAI  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1882-1886

    In this letter we present an electronic circuit based on a neural net to compute the discrete Walsh transform. We show both analytically and by simulation that the circuit is guaranteed to settle into the correct values.

  • Design and Simulation of Neural Network Digital Sequential Circuits

    Hiroshi NINOMIYA  Hideki ASAI  

     
    PAPER-Analog Circuits and Signal Processing

      Vol:
    E77-A No:6
      Page(s):
    968-976

    This paper describes a novel technique to realize high performance digital sequential circuits by using Hopfield neural networks. For an example of applications of neural networks to digital circuits, a novel gate circuit, full adder circuit and latch circuit using neural networks, which have the global convergence property, are proposed. Here, global convergence means that the energy function is monotonically decreasing and each circulit always operates correctly independently of the initial values. Finally the several digital sequential circuits such as shift register and asynchronous binary counter are designed.