The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fixed wireless access(5hit)

1-5hit
  • A Low-Noise, High-Gain Quasi-Millimeter-Wave Receiver MMIC with a Very High Degree of Integration Using 3D-MMIC Technology

    Takana KAHO  Yo YAMAGUCHI  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER-Active Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1548-1556

    We present a highly integrated quasi-millimeter-wave receiver MMIC that integrates 22 circuits in a 3 2.3 mm area using three-dimensional MMIC (3D-MMIC) technology. The MMIC achieves low noise (3 dB) and high gain (41 dB) at 26 GHz by using an on-chip image reject filter. It integrates a multiply-by-eight (X8) local oscillator (LO) chain with the IF frequency of the 2.4 GHz band and can use low-cost voltage-controlled oscillators (VCOs) and demodulators in a 2–3 GHz frequency band. Multilayer inductors contribute to the miniaturization especially in a 2–12 GHz frequency band. Furthermore, it achieves a high dynamic range by using two step attenuators with a new built-in inverter using an N-channel depression field-effect transistor (FET). The power consumption of the MMIC is only 450 mW.

  • Fabrication of Alternating-Phase Fed Single-Layer Slotted Waveguide Arrays Using Plastic Materials with Metal-Plating Open Access

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:8
      Page(s):
    2761-2763

    Lightweight single-layer slotted waveguide array antennas are fabricated using plastic materials with metal-plating. A plastic material that has good heat-radiation properties is investigated. Three types of antennas are fabricated by milling, using ABS resin, heat-radiating plastic, and aluminum alloy. In measurements, all three types of antennas are confirmed to have almost the same VSWR and gain in the 25 GHz frequency band.

  • Error Free Condition Attained by Down-Link Power Control for CDMA Fixed Wireless Access System: Measured ISI Level of Modem and Power Control Simulation

    Noboru IZUKA  Yoshimasa DAIDO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:1
      Page(s):
    56-67

    This paper describes feasibility of a proposed fixed wireless access system with CDMA technology. The system adopts a primary modulation of 16 QAM and the same frequency allocation in all cells to improve spectral efficiency. The system capacity is 1 Gbps per cell within 120 MHz bandwidth. The number of available orthogonal codes corresponds to the orthogonal code length in the system. All subscribers can attain an error free condition with output power control in the presence of inter-cell interference. The following two items are considered to examine the proposed system feasibility. 1) A test modem is fabricated, and a back-to-back modem BER performance is measured. An inter-symbol interference (ISI) level of the modem is estimated with the measured performance. 2) A computer simulation of down-link power control is carried out considering inter-cell interference and impairment factors of the power control such as intra-sector interference caused by the ISI and limited ranges of total and relative output power controls. The simulation results show that the proposed system would be feasible because the obtained power penalties caused by the above impairment factors are negligible.

  • Capacity Analysis and the Merging of a WDM Ring Fiber-Radio Backbone Incorporating Wavelength Interleaving with a Sectorized Antenna Interface

    Christina LIM  Ampalavanapillai NIRMALATHAS  Dalma NOVAK  Rodney WATERHOUSE  

     
    PAPER-Photonics for Antenna Systems

      Vol:
    E86-C No:7
      Page(s):
    1184-1190

    We investigate the capacity limitations of a WDM ring fiber-radio backbone incorporating wavelength interleaving where each base station drives a sectorized antenna interface. We also investigate the issues related to the merging of such networks with standard WDM infrastructures. The investigations show that re-allocating the interleaved WDM channels to fit within a 100 GHz block enables the millimeter-wave (mm-wave) fiber-radio system with sectorized antenna interfaces to integrate easily with WDM systems. The performance of a variety of channel allocations for the merged fiber-radio network is examined and simulation studies of the transmission of multiple channels are carried out. The overall network capacity of the merged mm-wave fiber-radio network is improved with the proposed channel allocation schemes.

  • An Adaptive Array Antenna Steered by IF Local Signal Phase Shifters for K-Band Broadband Fixed Wireless Access Base Station

    Shuichi OBAYASHI  Osamu SHIBATA  Hideo KASAMI  Hiroki SHOKI  Yasuo SUZUKI  

     
    PAPER-Adaptive Antennas

      Vol:
    E84-B No:9
      Page(s):
    2523-2529

    Broadband fixed wireless access (FWA) systems offer significantly higher bit rates than current cellular systems to which adaptive arrays are partly applied. Digital beam forming is being eagerly explored on account of its flexibility, but it will be difficult to apply to the high-speed systems, because its digital signal processing requires huge resources and power consumption. Conventional phased arrays, on the other hand, utilize phase shifters through RF or IF signal lines, but the phase shifters are usually both bulky and expensive. The authors propose an adaptive array steered by IF local signal phase shifters in this paper. The phase shift and the frequency shift of the signal from each antenna element can be simultaneously accomplished at the down conversion stage by the phase-controlled local signal. A prototype receiver operated in the K-band with the proposed configuration and its beam pattern measurement results are also described.