1-5hit |
Haijun LIANG Hongyu YANG Bo YANG
A new paradigm for building Virtual Controller Model (VCM) for traffic flow simulator is developed. It is based on flight plan data and is applied to Traffic Flow Management System (TFMS) in China. The problem of interest is focused on the sectors of airspace and how restrictions to aircraft movement are applied by air traffic controllers and demand overages or capacity shortfalls in sectors of airspace. To estimate and assess the balance between the traffic flow and the capacity of sector in future, we apply Virtual Controller model, which models by the sectors airspace system and its capacity constraints. Numerical results are presented and illustrated by applying them to air traffic data for a typical day in the Traffic Flow Management System. The results show that the predictive capabilities of the model are successfully validated by showing a comparison between real flow data and simulated sector flow, making this method appropriate for traffic flow management system.
ATFM (Air Traffic Flow Management) keeps air traffic flows safe and orderly. When the estimated workload exceeds capacity limit, traffic demand is controlled. In Japan, The ATFM system estimates controller's workload by a lot of parameter that depend on sector characteristics represented by traffic flow. The calculation of the value needs a lot of analysis. Author proposes a simple method for estimating the workload created by the traffic situation.
This paper proposes a coordinator for workflow management systems (WFMSs). It is a basic module for developing WFMSs. It is also a coordinator to coordinate multiple WFMSs. The coordinator provides functions to facilitate executing workflows and to ensure secure access of workflow information. Facilitating workflow execution is well-known, but ensuring secure access of workflow information is identified as important only recently. Although many models ensure secure workflow information access, they fail to offer the features we need. We thus developed a new model for the control. This paper presents the coordinator its access control model.
Katsuya MINAMI Hideki TODE Koso MURAKAMI
As multimedia and high-speed traffic become more popular on the Internet, the various traffic requiring different qualities of service (QoS) must co-exist. In addition, classified services based on Diff-Serv (Differentiated Service), MPLS (Multi-Protocol Label Switching), etc., have come into wide use. Today's Internet environment requires routers to perform control mechanisms in order to guarantee various QoSs. In this paper, we propose a smart buffer management scheme for the Internet router that uses hierarchical priority control with port class and flow level. Furthermore, since the proposed scheme must operate at very high speed, we first propose several design policy for high speed operation and the hardware implementation is performed in VHDL code. Implementation results show that the proposed scheme can scale with high-speed link, achieving the maximum rate of 4.0 Gbps by using the 3.5 µm CMOS technology.
Katsuya MINAMI Hideki TODE Koso MURAKAMI
Recently, as multimedia and high-speed traffic become more popular on the Internet, the various traffic requiring different qualities of service (QoS) will co-exist. In addition, classified service based on Diff-Serv (Differentiated Service), MPLS (Multi-Protocol Label Switching),etc., have come into wide use. Today's Internet environment requires routers to perform control mechanisms in order to guarantee various QoSs. In this paper, we propose a buffer management scheme for the Internet router that uses class-based priority control. This paper focuses on per-flow queueing, and evaluates the performance of the proposed buffer management scheme. Realization of differentiated services and dissolution of buffer occupation by specific flow is expected by the proposed control.