1-2hit |
Do Hyun KIM Kyoung Ho CHOI Kyeong Tae KIM Ki Joune LI
In this letter, we propose a novel approach using wireless sensor networks (WSNs) to enhance the safety and efficiency of four-way stop-sign-controlled (FWSC) intersections. The proposed algorithm provides right of way (RoW) and crash avoidance information by means of an intelligent WSN system. The system is composed of magnetic sensors, embedded in the center of a lane, with relay nodes and a base station placed on the side of the road. The experimental results show that the vehicle detection accuracy is over 99% and the sensor node battery life expectancy is over 3 years for traffic of 5,800 vehicles per day. For the traffic application we consider, a strong effect is observed as the projected conflict rate was reduced by 72% compared to an FWSC intersection operated with only driver perception.
Hitoshi HAYASHI Donald A. HITKO Charles G. SODINI
This paper describes a simple design of a broad-band four-way power divider with 45-degree phase differences between output ports. In the first stage of our work, we present a new broad-band 90-degree power divider. The phase error of the power divider here is less than one-tenth of the conventional 90-degree branch-line hybrid. Next, an experimental UHF-band four-way power divider using a broad-band 90-degree power divider and two broad-band 45-degree power dividers is presented. Over the frequency range from 0.86 to 1.06 GHz, the experimental four-way power divider exhibits power splits of -6.420.25 dB, return losses of greater than 15 dB, errors in the desired relative-phase difference between output ports of less than 1 degree, and isolation between output ports of greater than 15 dB. This divider is useful for realizing low distortion and high efficiency amplifiers without the need for an isolator.