The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] full-wave simulation(2hit)

1-2hit
  • A Combination Method for Impedance Extraction of SMD Electronic Components Based on Full-Wave Simulation and De-Embedding Technique Open Access

    Yang XIAO  Zhongyuan ZHOU  Mingjie SHENG  Qi ZHOU  

     
    PAPER-Measurement Technology

      Pubricized:
    2024/02/15
      Vol:
    E107-A No:8
      Page(s):
    1345-1354

    The method of extracting impedance parameters of surface mounted (SMD) electronic components by test is suitable for components with unknown model or material information, but requires consideration of errors caused by non-coaxial and measurement fixtures. In this paper, a fixture for impedance measurement is designed according to the characteristics of passive devices, and the fixture de-embedding method is used to eliminate errors and improve the test accuracy. The method of obtaining S parameters of fixture based on full wave simulation proposed in this paper can provide a thought for obtaining S parameters in de-embedding. Taking a certain patch capacitor as an example, the S parameters for de-embedding were obtained using methods based on full wave simulation, 2×Thru, and ADS simulation, and de-embedding tests were conducted. The results indicate that obtaining the S parameter of the testing fixture based on full wave simulation and conducting de-embedding testing compared to ADS simulation can accurately extract the impedance parameters of SMD electronic components, which provides a reference for the study of electromagnetic interference (EMI) coupling mechanism.

  • Experimental Exploration of the Backside ESD Impacts on an IC Chip in Flip Chip Packaging

    Takuya WADATSUMI  Kohei KAWAI  Rikuu HASEGAWA  Kikuo MURAMATSU  Hiromu HASEGAWA  Takuya SAWADA  Takahito FUKUSHIMA  Hisashi KONDO  Takuji MIKI  Makoto NAGATA  

     
    PAPER

      Pubricized:
    2023/04/13
      Vol:
    E106-C No:10
      Page(s):
    556-564

    This paper presents on-chip characterization of electrostatic discharge (ESD) impacts applied on the Si-substrate backside of a flip-chip mounted integrated circuit (FC-IC) chip. An FC-IC chip has an open backside and there is a threat of reliability problems and malfunctions caused by the backside ESD. We prepared a test FC-IC chip and measured Si-substrate voltage fluctuations on its frontside by an on-chip monitor (OCM) circuit. The voltage surges as large as 200mV were observed on the frontside when a 200-V ESD gun was irradiated through a 5kΩ contact resistor on the backside of a 350μm thick Si substrate. The distribution of voltage heights was experimentally measured at 20 on-chip locations among thinned Si substrates up to 40μm, and also explained in full-system level simulation of backside ESD impacts with the equivalent models of ESD-gun operation and FC-IC chip assembly.