The search functionality is under construction.

Keyword Search Result

[Keyword] greedy heuristic(2hit)

1-2hit
  • Formulation of a Test Pattern Measure That Counts Distinguished Fault-Pairs for Circuit Fault Diagnosis

    Tsutomu INAMOTO  Yoshinobu HIGAMI  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1456-1463

    In this paper, we aim to develop technologies for the circuit fault diagnosis and propose a formulation of a measure of a test pattern for the circuit fault diagnosis. Given a faulty circuit, the fault diagnosis is to deduce locations of faults that had occurred in the circuit. The fault diagnosis is executed in software before the failure analysis by which engineers inspect physical defects, and helps to improve the manufacturing process which yielded faulty circuits. The heart of the fault diagnosis is to distinguish between candidate faults by using test patterns, which are applied to the circuit-under-diagnosis (CUD), and thus test patterns that can distinguish as many faults as possible need to be generated. This fact motivates us to consider the test pattern measure based on the number of fault-pairs that become distinguished by a test pattern. To the best of the authors' knowledge, that measure requires the computational time of complexity order O(NF2), where NF denotes the number of candidate faults. Since NF is generally large for real industrial circuits, the computational time of the measure is long even when a high-performance computer is used. The formulation proposed in this paper makes it possible to calculate the measure in the computational complexity of O(NF log NF), and thus that measure is useful for the test pattern selection in the fault diagnosis. In computational experiments, the effectiveness of the formulation is demonstrated as samples of computational times of the measure calculated by the traditional and the proposed formulae and thorough comparisons between several greedy heuristics which are based on the measure.

  • Approximation Algorithms for Submodular Set Cover with Applications

    Toshihiro FUJITO  

     
    INVITED SURVEY PAPER-Approximate Algorithms for Combinatorial Problems

      Vol:
    E83-D No:3
      Page(s):
    480-487

    The main problem considered is submodular set cover, the problem of minimizing a linear function under a nondecreasing submodular constraint, which generalizes both well-known set cover and minimum matroid base problems. The problem is NP-hard, and two natural greedy heuristics are introduced along with analysis of their performance. As applications of these heuristics we consider various special cases of submodular set cover, including partial cover variants of set cover and vertex cover, and node-deletion problems for hereditary and matroidal properties. An approximation bound derived for each of them is either matching or generalizing the best existing bounds.