1-3hit |
Yoshihisa SOUTOME Tokuumi FUKAZAWA Kazuo SAITOH Akira TSUKAMOTO Kazumasa TAKAGI
We fabricated ramp-edge junctions with barriers by modifying surface and integrating ground-planes. The fabricated junctions had current-voltage characteristics consistent with the resistive shunted-junction model. We also obtained a 1-sigma spread in the critical current of 7.9% for 100 junctions at 4.2 K. The ground-plane reduced the sheet inductance of a stripline by a factor of 3. The quality of the ground-plane was improved by using an anneal in oxygen atmosphere after fabrication. The sheet inductance of a counter-electrode with a ground-plane was 1.0 pH per square at 4.2 K.
Tetsuro SATOH Mutsuo HIDAKA Shuichi TAHARA
We have studied an in situ edge preparation process and the effect of a substrate rotation during the edge preparation in order to improve the uniformity and electrical characteristics of high-Tc edge-type Josephson junctions. The improved YBa2Cu3Ox/PrBa2Cu3Ox/YBa2Cu3Ox edge junctions showed small 1σ-critical current spreads as low as 10% for 12 junctions. We have confirmed that the spreads do not increase significantly by adding groundplane over the junctions. In this paper, we will describe these processes developed for the fabrication of high-Tc superconducting integrated circuits.
Mutsuo HIDAKA Tetsuro SATOH Hirotaka TERAI Shuichi TAHARA
This is a review of our high-Tc superconductor (HTS) sampler development. The design and experimental demonstration of a Josephson sampler circuit based on YBa2 Cu3Ox(YBCO)/PrBa2Cu3Ox/YBCO ramp-edge junctions is described. The sampler circuit contains five edge junctions with a stacked YBCO groundplane and is based on single-flux quantum (SFQ) operations. Computer simulation results show that the time resolution of the sampler circuit depends strongly on the IcRn product of the junction and can be reduced to a few picoseconds with realistic parameter values. The edge junctions were fabricated using an in-situ process in which a barrier and a counter-electrode layer are deposited immediately after the edge etching without breaking the vacuum. The in-situ process improved the critical current uniformity of the junctions to 1σ20% in twelve 4-µm-width junctions. An YBCO groundplane was placed on the junctions in a multilayer structure we call the HUG (HTS cricuit with an upper-layer groundplane) structure. The inductance of YBCO lines was reduced to 1 pH per square without junction-quality degradation in the HUG structure. SFQ current-pulse generation, SFQ storage, and SFQ readout in the circuit have been confirmed by function tests using 3-kHz pulse currents. The successful operation of the sampler circuit has been demonstrated by measuring a signal-current waveform at 50K.