The search functionality is under construction.

Keyword Search Result

[Keyword] hardware random number generator(2hit)

1-2hit
  • Evaluation of a True Random Number Generator Utilizing Timing Jitters in RSFQ Logic Circuits Open Access

    Kenta SATO  Naonori SEGA  Yuta SOMEI  Hiroshi SHIMADA  Takeshi ONOMI  Yoshinao MIZUGAKI  

     
    BRIEF PAPER

      Pubricized:
    2022/01/19
      Vol:
    E105-C No:6
      Page(s):
    296-299

    We experimentally evaluated random number sequences generated by a superconducting hardware random number generator composed of a Josephson-junction oscillator, a rapid-single-flux-quantum (RSFQ) toggle flip-flop (TFF), and an RSFQ AND gate. Test circuits were fabricated using a 10 kA/cm2 Nb/AlOx/Nb integration process. Measurements were conducted in a liquid helium bath. The random numbers were generated for a trigger frequency of 500 kHz under the oscillating Josephson-junction at 29 GHz. 26 random number sequences of 20 kb length were evaluated for bias voltages between 2.0 and 2.7 mV. The NIST FIPS PUBS 140-2 tests were used for the evaluation. 100% pass rates were confirmed at the bias voltages of 2.5 and 2.6 mV. We found that the Monobit test limited the pass rates. As numerical simulations suggested, a detailed evaluation for the probability of obtaining “1” demonstrated the monotonical dependence on the bias voltage.

  • A Process and Temperature Tolerant Oscillator-Based True Random Number Generator

    Takehiko AMAKI  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-Circuit Design

      Vol:
    E97-A No:12
      Page(s):
    2393-2399

    This paper presents an oscillator-based true random number generator (TRNG) that dynamically unbiases 0/1 probability. The proposed TRNG automatically adjusts the duty cycle of a fast oscillator to 50%, and generates unbiased random numbers tolerating process variation and dynamic temperature fluctuation. A prototype chip of the proposed TRNG was fabricated with a 65nm CMOS process. Measurement results show that the developed duty cycle monitor obtained the probability of ‘1’ 4,100 times faster than the conventional output bit observation, or estimated the probability with 70 times higher accuracy. The proposed TRNG adjusted the probability of ‘1’ to within 50±0.07% in five chips in the temperature range of 0°C to 75°C. Consequently, the proposed TRNG passed the NIST and DIEHARD tests at 7.5Mbps with 6,670µm2 area.