The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] harmonic tuning(3hit)

1-3hit
  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • Experimental Design Method for High-Efficiency Microwave Power Amplifiers Based on a Low-Frequency Active Harmonic Load-Pull Technique

    Ryo ISHIKAWA  Yoichiro TAKAYAMA  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1147-1155

    A novel experimental design method based on a low-frequency active load-pull technique that includes harmonic tuning has been proposed for high-efficiency microwave power amplifiers. The intrinsic core component of a transistor with a maximum oscillation frequency of more than several tens of gigahertz can be approximately assumed as the nonlinear current source with no frequency dependence at an operation frequency of several gigahertz. In addition, the reactive parasitic elements in a transistor can be omitted at a frequency of much less than 1GHz. Therefore, the optimum impedance condition including harmonics for obtaining high efficiency in a nonlinear current source can be directly investigated based on a low-frequency active harmonic load-pull technique in the low-frequency region. The optimum load condition at the operation frequency for an external load circuit can be estimated by considering the properties of the reactive parasitic elements and the nonlinear current source. For an InGaAs/GaAs pHEMT, active harmonic load-pull considering up to the fifth-order harmonic frequency was experimentally carried out at the fundamental frequency of 20MHz. By using the estimated optimum impedance condition for an equivalent nonlinear current source, high-frequency amplifiers were designed and fabricated at the 1.9-GHz, 2.45-GHz, and 5.8-GHz bands. The fabricated amplifiers exhibited maximum drain efficiency values of 79%, 80%, and 74% at 1.9GHz, 2.47GHz, and 5.78GHz, respectively.

  • Improvement in Performance of Power Amplifiers by Defected Ground Structure

    Jong-Sik LIM  Yong-Chae JEONG  Dal AHN  Sangwook NAM  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:1
      Page(s):
    52-59

    This paper describes the performance improvement of power amplifiers by defected ground structure (DGS). Due to the excellent capability of harmonic rejection and tuning, DGS plays a great role in improving the major nonlinear behaviors of power amplifier such as output power, harmonics, power added efficiency (PAE), and the ratio between the carrier and the third order intermodulation distortion (C/IMD3). In order to verify the improvement of performances by DGS, measured data for a power amplifier, which adopts a 30 Watts LDMOS device for the operation at 2.1-2.2 GHz, are illustrated under several operating bias currents for two cases, i.e., with and without DGS attached. The principle of the improvement is described by the simple Volterra nonlinear transfer functions with the consideration of different operating classes. The obtained improvement of the 30 Watts power amplifier, under 400 mA of IdsQ as an example, includes the reduction in the second and third harmonics by 17 dB and 20 dB, and the increase in output power, PAE, and C/IMD3 by 1.3 Watts, 3.4%, and 4.7 dB, respectively.