1-2hit |
BaSnO3 is proposed as a new insulating material with good surface coverage of the lower superconductor electrode for superconductor/insulator/superconductor (SIS) tunnel junctions made of high-Tc superconductor YBa2Cu3Ox (YBCO). This paper reports on investigation of the epitaxial nature of BaSnO3 on YBCO thin films and YBCO/BaSnO3 /YBCO trilayer formation that are grown in situ by reactive co-evaporation in oxygen radicals. Investigation was done by reflection high-energy electron diffraction (RHEED), atomic force microscopy (AFM), and X-ray diffraction (XRD). these observations confirm that (001)-oriented YBCO and (100)-oriented BaSnO3 thin films with atomically smooth surfaces grow epitaxially on each other. In addition, cross-sectional transmission electron microscopy (TEM) observation reveals that an approximately 4-nm-thick layer of BaSnO3 perfectly covers the lower YBCO thin film surface steps to a height of 1 to 2 unit cells of YBCO. The zero-resistance critical temperature Tc zero of both the upper and the lower YBCO thin films is higher than about 86 K.
Takahisa HAYASHI Yoshiyuki KAWAZU Akira UCHIYAMA Hisashi FUKUDA
We propose, for the first time, highly reliable flash-type EEPROM cell fabrication using in-situ multiple rapid thermal processing (RTP) technology. In this study, rapid thermal oxynitridation tunnel oxide (RTONO) film formations followed by in-situ arsenic (As)-doped floating-gate polysilicon growth by rapid thermal chemical vapor deposition (RTCVD) technologies are fully utilized. The results show that after 5104 program/erase (P/E) endurance cycles, the conventional cell shows 65% narrowing of the threshold voltage (Vt) window, whereas the RTONO cell indicates narrowing of less than 20%. A large number of nitrogen atoms (1020 atoms/cm3) are confirmed by secondary ion mass spectrometry (SIMS), pile up at the SiO2/Si interface and distribute into bulk SiO2. It is considered that in the RTONO film stable Si-N bonds are formed which minimize electron trap generation as well as the neutral defect density, resulting in lower Vt shifts in P/E stress. In addition, the RTONO film reduces the number of hydrogen atoms because of final N2O oxynitridation. The SIMS data shows that by the in-situ RTCVD process As atoms (91020 atoms/cm3) are incorporated uniformly into 1000--thick film. Moreover, the RTCVD polysilicon film indicates an extremely flat surface. The time-dependent dielectric breakdown (TDDB) characteristics of interpoly oxide-nitride-oxide (ONO) film exhibited no defect-related breakdown and 5 times longer breakdown time as compared to phosphorus-doped polysilicon film. Therefore, the flash-EEPROM cell fabricated has good charge storing capability.