The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] interference(854hit)

181-200hit(854hit)

  • Non-Orthogonal Multiple Access Using Intra-Beam Superposition Coding and Successive Interference Cancellation for Cellular MIMO Downlink

    Kenichi HIGUCHI  Yoshihisa KISHIYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:9
      Page(s):
    1888-1895

    We investigate non-orthogonal multiple access (NOMA) with a successive interference canceller (SIC) in the cellular multiple-input multiple-output (MIMO) downlink for systems beyond LTE-Advanced. Taking into account the overhead for the downlink reference signaling for channel estimation at the user terminal in the case of non-orthogonal multiuser multiplexing and the applicability of the SIC receiver in the MIMO downlink, we propose intra-beam superposition coding of a multiuser signal at the transmitter and the spatial filtering of inter-beam interference followed by the intra-beam SIC at the user terminal receiver. The intra-beam SIC cancels out the inter-user interference within a beam. Regarding the transmitter beamforming (precoding), in general, any kind of beamforming matrix determination criteria can be applied to the proposed NOMA method. In the paper, we assume open loop-type random beamforming, which is very efficient in terms of the amount of feedback information from the user terminal. Furthermore, we employ a weighted proportional fair (PF)-based resource (beam of each frequency block and power) allocation for the proposed method. Simulation results show that the proposed NOMA method using the intra-beam superposition coding and SIC simultaneously achieves better sum and cell-edge user throughput compared to orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems.

  • A Sequential Iterative Resource Allocation Scheme for a 2-hop OFDMA Virtual Cellular Network

    Gerard Jimmy PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1640-1650

    Multi-hop networks have been proposed to increase the data transmission rate in wireless mobile networks, and consequently improve the quality of experience of cell-edge users. A successive resource allocation scheme (SAS) has been proposed for a 2-hop virtual cellular network (VCN). In a multi-cell environment, the performance of SAS degrades because of intra-cell and inter-cell interference. In order to alleviate the effect of intra-cell and inter-cell interference and consequently increase the channel capacity of the VCN, this paper proposes the sequential iterative allocation scheme (SIS). Computer simulation results show that, compared to SAS, SIS can improve the fairness, the ergodic, and the outage channel capacity per mobile terminal (MT) of the VCN in a multi-cell environment. This paper also analyzes the performance of the VCN compared to that of the single hop network (SHN) when SIS is applied in a multi-cell environment. Using SIS, VCN can provide higher ergodic channel capacity, and better degree of fairness than SHN in a multi-cell environment. The effect of the number of wireless ports (WPs) in the VCN is also investigated, and the results suggest that adding more WPs per virtual cell in the VCN can enhance the outage channel capacity per MT and the degree of fairness of the VCN.

  • Downlink Non-Orthogonal Multiple Access (NOMA) Combined with Single User MIMO (SU-MIMO)

    Anass BENJEBBOUR  Anxin LI  Keisuke SAITO  Yoshihisa KISHIYAMA  Takehiro NAKAMURA  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1415-1425

    This paper investigates a downlink non-orthogonal multiple access (NOMA) combined with single user MIMO (SU-MIMO) for future LTE (Long-Term Evolution) enhancements. In particular, we propose practical schemes to efficiently combine NOMA with open-loop SU-MIMO (Transmission Mode 3: TM3) and closed-loop SU-MIMO (Transmission Mode 4: TM4) specified in LTE. The goal is also to clarify the performance gains of NOMA combined with SU-MIMO transmission, taking into account the LTE radio interface such as frequency-domain scheduling, adaptive modulation and coding (AMC), and NOMA specific functionalities such as, multi-user pairing/ordering, transmit power allocation and successive interference cancellation (SIC) at the receiver side. Based on computer simulations, we evaluate NOMA link-level performance and show that the impact of error propagation associated with SIC is marginal when the power ratio of cell-edge and cell-center users is sufficiently large. In addition, we evaluate NOMA system-level performance gains for different granularities of scheduling and MCS (modulation and coding scheme) selection, for both genie-aided channel quality information (CQI) estimation and approximated CQI estimation, and using different number of power sets. Evaluation results show that NOMA combined with SU-MIMO can still provide a hefty portion of its expected gains even with approximated CQI estimation and limited number of power sets, and also when LTE compliant subband scheduling and wideband MCS is applied.

  • Non-Orthogonal Multiple Access Using Intra-Beam Superposition Coding and SIC in Base Station Cooperative MIMO Cellular Downlink

    Nobuhide NONAKA  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1651-1659

    This paper extends our previously proposed non-orthogonal multiple access (NOMA) scheme to the base station (BS) cooperative multiple-input multiple-output (MIMO) cellular downlink for future radio access. The proposed NOMA scheme employs intra-beam superposition coding of a multiuser signal at the transmitter and the spatial filtering of inter-beam interference followed by the intra-beam successive interference canceller (SIC) at the user terminal receiver. The intra-beam SIC cancels out the inter-user interference within a beam. This configuration achieves reduced overhead for the downlink reference signaling for channel estimation at the user terminal in the case of non-orthogonal user multiplexing and enables the use of the SIC receiver in the MIMO downlink. The transmitter beamforming (precoding) matrix is controlled based on open loop-type random beamforming using a block-diagonalized beamforming matrix, which is very efficient in terms of the amount of feedback information from the user terminal. Simulation results show that the proposed NOMA scheme with block-diagonalized random beamforming in BS cooperative multiuser MIMO and the intra-beam SIC achieves better system-level throughput than orthogonal multiple access (OMA), which is assumed in LTE-Advanced. We also show that BS cooperative operation along with the proposed NOMA further enhances the cell-edge user throughput gain which implies better user fairness and universal connectivity.

  • An Approach to Evaluate Electromagnetic Interference with a Wearable ECG at Frequencies below 1MHz

    Wei LIAO  Jingjing SHI  Jianqing WANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:8
      Page(s):
    1606-1613

    In this study, we propose a two-step approach to evaluate electromagnetic interference (EMI) with a wearable vital signal sensor. The two-step approach combines a quasi-static electromagnetic (EM) field analysis and an electric circuit analysis, and is applied to the EMI evaluation at frequencies below 1 MHz for our developed wearable electrocardiogram (ECG) to demonstrate its usefulness. The quasi-static EM field analysis gives the common mode voltage coupled from the incident EM field at the ECG sensing electrodes, and the electric circuit analysis quantifies a differential mode voltage at the differential amplifier output of the ECG detection circuit. The differential mode voltage has been shown to come from a conversion from the common mode voltage due to an imbalance between the contact impedances of the two sensing electrodes. When the contact impedance is resistive, the induced differential mode voltage increases with frequency up to 100kHz, and keeps constant after 100kHz, i.e., exhibits a high pass filter characteristic. While when the contact impedance is capacitive, the differential mode voltage exhibits a band pass filter characteristic with the maximum at frequency of around 150kHz. The differential voltage may achieve nearly 1V at the differential amplifier output for an imbalance of 30% under 10V/m plane-wave incident electric field, and completely mask the ECG signal. It is essential to reduce the imbalance as much as possible so as to prevent a significant interference voltage in the amplified ECG signal.

  • Robust Beamforming for Joint Transceiver Design in K-User Interference Channel over Energy Efficient 5G

    Shidang LI  Chunguo LI  Yongming HUANG  Dongming WANG  Luxi YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:8
      Page(s):
    1860-1864

    Considering worse-case channel uncertainties, we investigate the robust energy efficient (EE) beamforming design problem in a K-user multiple-input-single-output (MISO) interference channel. Our objective is to maximize the worse-case sum EE under individual transmit power constraints. In general, this fractional programming problem is NP-hard for the optimal solution. To obtain an insight into the problem, we first transform the original problem into its lower bound problem with max-min and fractional form by exploiting the relationship between the user rate and the minimum mean square error (MMSE) and using the min-max inequality. To make it tractable, we transform the problem of fractional form into a subtractive form by using the Dinkelbach transformation, and then propose an iterative algorithm using Lagrangian duality, which leads to the locally optimal solution. Simulation results demonstrate that our proposed robust EE beamforming scheme outperforms the conventional algorithm.

  • An Interference Mitigation Technique for Dynamic TDD Based Frequency-Separated Small Cell Network in LTE-Advanced Based Future Wireless Access

    Hiroki TAKAHASHI  Kazunari YOKOMAKURA  Kimihiko IMAMURA  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1436-1446

    This paper investigates an interference mitigation technique for dynamic time division duplex (TDD) based frequency-separated small cell networks in future long term evolution advanced (LTE-A) based wireless access systems. In dynamic TDD, cross-link interference, i.e. evolved node B (eNB)-eNB interference and user equipment (UE)-UE interference, also occur, and eNB-eNB interference in particular significantly degrades the uplink (UL) transmission performance. In order to alleviate the impacts of eNB-eNB interference and to obtain high traffic adaptation gain, we investigate a transmit power control (TPC) based interference mitigation (IM) scheme. In TPC-IM, time-domain subframes are divided into two subframe sets according to whether the cross-link interference can occur or not, and different TPC parameters are applied depending on the type of subframe. To improve of UL signal to interference plus noise power ratio (SINR) in the subframe set with the potential to occur eNB-eNB interference, there are two approaches of UL power boosting and downlink (DL) power reduction. We investigate the adequate combination of these two approaches to avoid an impact of DL performance degradation and increase of UE power consumption. Moreover, we further investigate a combined scheme of the TPC-IM and a cell clustering interference mitigation (CCIM) to avoid the significantly strong cross-link interference from the neighbouring cells. Computer simulation confirms that the proposed TPC-IM scheme can achieve 4.4% and 26.2% gain in the average DL and UL throughputs, respectively, compared to the case without any IM schemes on dynamic TDD. Moreover, when the CCIM is applied to the TPC-IM scheme, 11.6% and 40.3% gain can be achieved in the average DL and UL throughputs, respectively.

  • Inter-Cell Interference Coordination Method Based on Coordinated Inter-Cell Interference Power Control in Uplink

    Kenichi HIGUCHI  Yoshiko SAITO  Seigo NAKAO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:7
      Page(s):
    1357-1362

    We propose an inter-cell interference coordination (ICIC) method that employs inter-cell coordinated transmission power control (TPC) based on inter-cell interference power in addition to conventional received signal power-based TPC in the cellular uplink. We assume orthogonal multiple-access as is used in 3GPP LTE. In the proposed method, an ICIC effect similar to that for conventional fractional frequency reuse (FFR) is obtained. This is achieved by coordinating the allowable inter-cell interference power level at the appropriate frequency blocks within the system bandwidth among neighboring cells in a semi-static manner. Different from conventional FFR, since all users within a cell can access all the frequency blocks, the reduction in multiuser diversity gain is abated. Computer simulation results show that the proposed method enhances both the cell-edge and average user throughput simultaneously compared to conventional universal frequency reuse (UFR) and FFR.

  • A Robust Interference Covariance Matrix Reconstruction Algorithm against Arbitrary Interference Steering Vector Mismatch

    Xiao Lei YUAN  Lu GAN  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1553-1557

    We address a robust algorithm for the interference-plus-noise covariance matrix reconstruction (RA-INCMR) against random arbitrary steering vector mismatches (RASVMs) of the interferences, which lead to substantial degradation of the original INCMR beamformer performance. Firstly, using the worst-case performance optimization (WCPO) criteria, we model these RASVMs as uncertainty sets and then propose the RA-INCMR to obtain the robust INCM (RINCM) based on the Robust Capon Beamforming (RCB) algorithm. Finally, we substitute the RINCM back into the original WCPO beamformer problem for the sample covariance matrix to formulate the new RA-INCM-WCPO beamformer problem. Simulation results demonstrate that the performance of the proposed beamformer is much better than the original INCMR beamformer when there exist RASVMs, especially at low signal-to-noise ratio (SNR).

  • Characteristics of Small Gap Discharge Events and Their EMI Effects

    Masamitsu HONDA  Satoshi ISOFUKU  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1220-1226

    This paper shows that the induced peak voltage on the short monopole antenna by the EM field radiated from a small gap discharge when the gap width was experimentally changed from 10 to 360µm was not directly proportional to the discharge voltage between the gap. It was found that the 10mm short monopole antenna induced peak voltage had a peak value between 40 and 60µm gap width.

  • Centralized Inter-Cell Interference Coordination Using Multi-Band 3D Beam-Switching in Cellular Networks

    Hiroyuki SEKI  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:7
      Page(s):
    1363-1372

    The deployment of small cells is one of the most effective means to cope with the traffic explosion of cellular mobile systems. However, a small cell system increases the inter-cell interference, which limits the capacity and degrades the cell-edge user throughput. Inter-cell interference coordination (ICIC), such as fractional frequency reuse (FFR), is a well-known scheme that autonomously mitigates inter-cell interference. In the Long Term Evolution (LTE)-Advanced, the three-dimensional (3D) beamforming, which combines conventional horizontal beamforming and vertical beamforming, has been gaining increasing attention. This paper proposes a novel centralized ICIC scheme that controls the direction of narrow 3D beam for each frequency band of each base station. The centralized controller collects information from the base stations and calculates sub-optimum combinations of narrow beams so as to maximize the proportional fair (PF) utility of all users. This paper describes the throughput of the new centralized ICIC scheme as evaluated by computer simulations and shows it has a significant gain in both average user throughput and cell-edge user throughput compared with the conventional ICIC scheme. This paper also investigates the feasibility of the scheme by assessing its throughput performance in a realistic deployment scenario.

  • Evaluation of Impact on Digital Radio Systems by Measuring Amplitude Probability Distribution of Interfering Noise Open Access

    Yasushi MATSUMOTO  Kia WIKLUNDH  

     
    INVITED PAPER

      Vol:
    E98-B No:7
      Page(s):
    1143-1155

    This paper presents a method for evaluating the maximum bit error probability (BEP) of a digital communication system subjected to interference by measuring the amplitude probability distribution (APD) of the interfering noise. Necessary conditions for the BEP evaluation are clarified both for the APD measuring receiver and the communication receiver considered. A method of defining emission limits is presented in terms of APD so that the worst BEP of a communication system does not exceed a required permissible value. The methods provide a theoretical basis for a wide variety of applications such as emission requirements in compliance testing, dynamic spectrum allocations, characterization of an electromagnetic environment for introducing new radio systems, and evaluation of intra-system interference.

  • Outage Performance of MIMO Multihop Relay Network with MRT/RAS Scheme

    Xinjie WANG  Yuzhen HUANG  Yansheng LI  Zhe-Ming LU  

     
    LETTER-Information Network

      Pubricized:
    2015/04/20
      Vol:
    E98-D No:7
      Page(s):
    1381-1385

    In this Letter, we investigate the outage performance of MIMO amplify-and-forward (AF) multihop relay networks with maximum ratio transmission/receiver antenna selection (MRT/RAS) over Nakagami-m fading channels in the presence of co-channel interference (CCI) or not. In particular, the lower bounds for the outage probability of MIMO AF multihop relay networks with/without CCI are derived, which provides an efficient means to evaluate the joint effects of key system parameters, such as the number of antennas, the interfering power, and the severity of channel fading. In addition, the asymptotic behavior of the outage probability is investigated, and the results reveal that the full diversity order can be achieved regardless of CCI. In addition, simulation results are provided to show the correctness of our derived analytical results.

  • Multicell Distributed Beamforming Based on Gradient Iteration and Local CSIs

    Zijia HUANG  Xiaoxiang WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1058-1064

    In this paper, the multicell distributed beamforming (MDBF) design problem of suppressing intra-cell interference (InCI) and inter-cell interference (ICI) is studied. To start with, in order to decrease the InCI and ICI caused by a user, we propose a gradient-iteration altruistic algorithm to derive the beamforming vectors. The convergence of the proposed iterative algorithm is proved. Second, a metric function is established to restrict the ICI and maximize cell rate. This function depends on only local channel state information (CSI) and does not need additional CSIs. Moreover, an MDBF algorithm with the metric function is proposed. This proposed algorithm utilizes gradient iteration to maximize the metric function to improve sum rate of the cell. Finally, simulation results demonstrate that the proposed algorithm can achieve higher cell rates while offering more advantages to suppress InCI and ICI than the traditional ones.

  • An ITI-Mitigating 5/6 Modulation Code for Bit-Patterned Media Recording

    Chanon WARISARN  Autthasith ARRAYANGKOOL  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Vol:
    E98-C No:6
      Page(s):
    528-533

    In bit-patterned media recording (BPMR), the readback signal is severely corrupted by the inter-symbol interference (ISI) and inter-track interference (ITI), especially at high recording densities, due to small bit and track pitches. One way to alleviate the ITI effect is to encode an input data sequence before recording, so as to avoid some data patterns that easily cause an error at the data detection process. This paper proposes an ITI-mitigating 5/6 modulation code for a multi-track multi-head BPMR system to eliminate the data patterns that lead to severe ITI. Specifically, each of the 5 user bits is converted into a 6-bit codeword in the form of a 3-by-2 data array, based on a look-up table. Experimental results indicate that the system with the proposed coding scheme outperforms that without coding, especially when an areal density is high and/or the position jitter is large.

  • Outer vs. Inner Region: Cellular Network Interference Analysis and Spectrum Resource Distribution in TV White Space

    Long ZHANG  Zhiyong FENG  Qixun ZHANG  Lingwu YUAN  Jia LIU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:6
      Page(s):
    1095-1109

    TV white space (TVWS) brings potential opportunities to relieve the growing spectrum scarcity. Therefore organizations like the FCC have suggested the co-channel deployment of cellular networks (CNs) on condition that a keep-out distance from the protected region of TV receivers is maintained. However the consequent CN interference has not been described. In addition, considering the wide range of TV coverage, it is also inefficient and wasteful not applying the vacant spectra for secondary user (SU) communication by opportunistic access inside the TV coverage zone. In this paper, we first investigate the aggregate interference from CNs outside the protected area to find out how the interference is generated, and then research the available spectrum resource distribution for SUs inside the TV coverage zone under aggregate interference constraints to utilize TVWS more efficiently. Specifically, we model CN in three aspects. A close-form interference probability distribution function (PDF) is proposed. Since the PDF is too complex to analyze, we approximate it as Gaussian and prove the accuracy of our approximation with Kolmogorov-Smirnov test. Then, available spectra maximization is formulated as an optimization problem under both TV and SU receiver outage probability constraints. We find that available spectra demonstrate a volcano-shaped geographical distribution and optimal network-status-aware SU transmit power exists to maximize the spectra. Our analysis reveals the characteristics of interference in TVWS and contributes to the utilization improvement of white space.

  • Performance Analysis of an LMS Based Adaptive Feedback Canceller for On-Channel Repeaters

    Jihoon CHOI  Young-Ho JUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    908-916

    An on-channel repeater (OCR) performing simultaneous reception and transmission at the same frequency is beneficial to improve spectral efficiency and coverage. In an OCR, it is important to cancel the feedback interference caused by imperfect isolation between the transmit and receive antennas, and least mean square (LMS) based adaptive filters are commonly used for this purpose. In this paper, we analyze the performance of the LMS based adaptive feedback canceller in terms of its transient behavior and the steady-state mean square error (MSE). Through a theoretical analysis, we derive iterative equations to compute transient MSEs and provide a procedure to simply evaluate steady-state MSEs for the adaptive feedback canceller. Simulation results performed to verify the theoretical MSEs show good agreement between the proposed theoretical analysis and the empirical results.

  • Interference-Aware Channel Segregation Based Dynamic Channel Assignment for Wireless Networks

    Yuki MATSUMURA  Katsuhiro TEMMA  Ren SUGAI  Tatsunori OBARA  Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Network Management/Operation

      Vol:
    E98-B No:5
      Page(s):
    854-860

    Recently, we proposed an interference-aware channel segregation based dynamic channel assignment (IACS-DCA). In IACS-DCA, each base station (BS) measures the instantaneous co-channel interference (CCI) power on each available channel, computes the moving average CCI power using past CCI measurement results, and selects the channel having the lowest moving average CCI power. In this way, the CCI-minimized channel reuse pattern can be formed. In this paper, we introduce the autocorrelation function of channel reuse pattern, the fairness of channel reuse, and the minimum co-channel BS distance to quantitatively examine the channel reuse pattern formed by the IACS-DCA. It is shown that the IACS-DCA can form a CCI-minimized channel reuse pattern in a distributed manner and that it improves the signal-to-interference ratio (SIR) compared to the other channel assignment schemes.

  • Generic Iterative Downlink Interference Alignment

    Won-Yong SHIN  Jangho YOON  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E98-B No:5
      Page(s):
    834-841

    In this paper, we introduce a promising iterative interference alignment (IA) strategy for multiple-input multiple-output (MIMO) multi-cell downlink networks, which utilizes the channel reciprocity between uplink/downlink channels. We intelligently combine iterative beamforming and downlink IA issues to design an iterative multiuser MIMO IA algorithm. The proposed scheme uses two cascaded beamforming matrices to construct a precoder at each base station (BS), which not only efficiently reduce the effect of inter-cell interference from other-cell BSs, referred to as leakage of interference, but also perfectly eliminate intra-cell interference among spatial streams in the same cell. The transmit and receive beamforming matrices are iteratively updated until convergence. Numerical results indicate that our IA scheme exhibits higher sum-rates than those of the conventional iterative IA schemes. Note that our iterative IA scheme operates with local channel state information, no time/frequency expansion, and even relatively a small number of mobile stations (MSs), unlike opportunistic IA which requires a great number of MSs.

  • Interference Suppression Method between Primary Broadcasting and Secondary Systems Using Load Modulation

    Takuma ITO  Naoki HONMA  Keisuke TERASAKI  Kentaro NISHIMORI  Yoshitaka TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:5
      Page(s):
    861-869

    Controlling interference from the secondary system (SS) to the receiver of the primary system (PS) is an important issue when the SS uses the same frequency band as the television broadcast system. The reason includes that the SS is unaware of the interference imposed on the primary receiver (PS-Rx), which does not have a transmitter. In this paper, we propose an interference control method between PS-Rx and SS, where a load modulation scheme is introduced to the PS-Rx. In this method, the signal from the PS transmitting station is scattered by switching its load impedance. The SS observes the scattered channel and calculates the interference suppression weights for transmitting, and controls interference by transmit beamforming. A simulation shows that the Signal-to-Interference Ratio (SIR) with interference control is improved by up to 41.5dB compared to that without interference control at short distances; the results confirm that the proposed method is effective in controlling interference between PS-Rx and SS. Furthermore, we evaluate the Signal-to-Noise Ratio (SNR) and channel capacity at SS.

181-200hit(854hit)