The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] kink(3hit)

1-3hit
  • Kink Suppression and High Reliability of Asymmetric Dual Channel Poly-Si Thin Film Transistors for High Voltage Bias Stress

    Joonghyun PARK  Myunghun SHIN  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E102-C No:1
      Page(s):
    95-98

    Asymmetrically designed polycrystalline silicon (poly-Si) thin film transistors (TFT) were fabricated and investigated to suppress kink effect and to improve electrical reliability. Asymmetric dual channel length poly-Si TFT (ADCL) shows the best reduction of kink and leakage currents. Technology computer-aided design simulation proves that ADCL can induce properly high voltage at floating node of the TFT at high drain-source voltage (VDS), which can mitigate the impact ionization and the degradation of the transconductance of the TFT showing high reliability under the hot carrier stress.

  • Numerical Analysis of the Effect of P-Regions on the I-V Kink in GaAs MESFETs

    Kazuya NISHIHORI  Yasuyuki MIYAMOTO  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E90-C No:8
      Page(s):
    1643-1649

    In this paper, we describe the effect of p-regions on the I-V kink in GaAs FETs. A kink-free p-pocket-type self-aligned gate GaAs MESFET (PP-MESFET), which does not include p-regions under the channel, has been analyzed and compared with a conventional buried-p-type self-aligned gate GaAs MESFET (BP-MESFET) using two-dimensional device simulation. The relation between the I-V kink and the layout of p-regions has been demonstrated by numerical simulation for the first time. For both the BP-MESFET and PP-MESFET, impact ionization produces holes in high-field regions. The holes accumulate under the channel, widen the channel, and cause an abrupt increase in drain current in turn in the BP-MESFET. On the other hand, in the PP-MESFET, holes generated in the high-field region are transported to the source region easily over the lower barrier owing to the absence of p-regions under the channel. Holes do not accumulate under the channel, leading to kink-free I-V characteristics of the PP-MESFET. P-regions should be located so as not to cause the accumulation of holes in GaAs FETs where p-regions are required for high-frequency performance.

  • Quasi-Periodicity Route to Chaos in Josephson Transmission Line

    Toshihide TSUBATA  Hiroaki KAWABATA  Yoshiaki SHIRAO  Masaya HIRATA  Toshikuni NAGAHARA  Yoshio INAGAKI  

     
    LETTER-Nonlinear Phenomena and Analysis

      Vol:
    E76-A No:9
      Page(s):
    1548-1554

    This letter discusses a behavior of solitons in a Josephson junction transmission line which is described by a perturbed sine-Gordon equation. It is shown that a soliton wave leads a quasi-periodic break down route to chaos in a Josephson transmission line. This route show phase locking, quasi-periodic state, chaos and hyper chaos, and these phenomena are examined by using Poincar sections, circle map, rotation number, and so on.