The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] learning strategy(3hit)

1-3hit
  • Enhancing the Performance of Cuckoo Search Algorithm with Multi-Learning Strategies Open Access

    Li HUANG  Xiao ZHENG  Shuai DING  Zhi LIU  Jun HUANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/09
      Vol:
    E102-D No:10
      Page(s):
    1916-1924

    The Cuckoo Search (CS) is apt to be trapped in local optimum relating to complex target functions. This drawback has been recognized as the bottleneck of its widespread use. This paper, with the purpose of improving CS, puts forward a Cuckoo Search algorithm featuring Multi-Learning Strategies (LSCS). In LSCS, the Converted Learning Module, which features the Comprehensive Learning Strategy and Optimal Learning Strategy, tries to make a coordinated cooperation between exploration and exploitation, and the switching in this part is decided by the transition probability Pc. When the nest fails to be renewed after m iterations, the Elite Learning Perturbation Module provides extra diversity for the current nest, and it can avoid stagnation. The Boundary Handling Approach adjusted by Gauss map is utilized to reset the location of nest beyond the boundary. The proposed algorithm is evaluated by two different tests: Test Group A(ten simple unimodal and multimodal functions) and Test Group B(the CEC2013 test suite). Experiments results show that LSCS demonstrates significant advantages in terms of convergence speed and optimization capability in solving complex problems.

  • Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition

    Jianhong WANG  Pinzheng ZHANG  Linmin LUO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    1259-1263

    Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.

  • Directing All Learners to Course Goal with Enforcement of Discipline Utilizing Persona Motivation

    Dong Phuong DINH  Fumiko HARADA  Hiromitsu SHIMAKAWA  

     
    PAPER-Educational Technology

      Vol:
    E96-D No:6
      Page(s):
    1332-1343

    The paper proposes the PMD method to design an introductory programming practice course plan that is inclusive for all learners and stable throughout a course. To achieve the course plan, the method utilizes personas, each of which represents learners having similar motivation to study programming. The learning of the personas is directed to the course goal with an enforcement resulting from the discipline, which is an integration of effective learning strategies with affective components of the persoans. Under the enforcement, services to facilitate and promote the learning of each persona can be decided, based on motivation components of each persona, motivational effects of the services, and the cycle of self-efficacy. The application of the method on about 500 freshmen in C programming practice course has shown this is a successful approach for designing courses.