The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] location algorithm(7hit)

1-7hit
  • Adaptive Balanced Allocation for Peer Assessments

    Hideaki OHASHI  Yasuhito ASANO  Toshiyuki SHIMIZU  Masatoshi YOSHIKAWA  

     
    PAPER

      Pubricized:
    2019/12/26
      Vol:
    E103-D No:5
      Page(s):
    939-948

    Peer assessments, in which people review the works of peers and have their own works reviewed by peers, are useful for assessing homework. In conventional peer assessment systems, works are usually allocated to people before the assessment begins; therefore, if people drop out (abandoning reviews) during an assessment period, an imbalance occurs between the number of works a person reviews and that of peers who have reviewed the work. When the total imbalance increases, some people who diligently complete reviews may suffer from a lack of reviews and be discouraged to participate in future peer assessments. Therefore, in this study, we adopt a new adaptive allocation approach in which people are allocated review works only when requested and propose an algorithm for allocating works to people, which reduces the total imbalance. To show the effectiveness of the proposed algorithm, we provide an upper bound of the total imbalance that the proposed algorithm yields. In addition, we extend the above algorithm to consider reviewing ability. The extended algorithm avoids the problem that only unskilled (or skilled) reviewers are allocated to a given work. We show the effectiveness of the proposed two algorithms compared to the existing algorithms through experiments using simulation data.

  • Highly Efficient Adaptive Bandwidth Allocation Algorithm for WDM/OFDM-PON-Based Elastic Optical Access Networks

    Hiroyuki SAITO  Naoki MINATO  Hideaki TAMAI  Hironori SASAKI  

     
    PAPER

      Pubricized:
    2017/10/18
      Vol:
    E101-B No:4
      Page(s):
    972-978

    Capital expenditure (CAPEX) reduction and efficient wavelength allocation are critical for the future access networks. Elastic lambda aggregation network (EλAN) based on WDM and OFDM technologies is expected to realize efficient wavelength allocation. In this paper, we propose adaptive bandwidth allocation (ABA) algorithm for EλAN under the conditions of crowded networks, in which modulation format, symbol rate and the number of sub-carriers are adaptively decided based on the distance of PON-section, QoS and bandwidth demand of each ONU. Network simulation results show that the proposed algorithm can effectively reduce the total bandwidth and achieve steady high spectrum efficiency and contribute to the further reduction of CAPEX of future optical access networks.

  • Stochastic Sparse-Grid Collocation Algorithm for Steady-State Analysis of Nonlinear System with Process Variations

    Jun TAO  Xuan ZENG  Wei CAI  Yangfeng SU  Dian ZHOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:6
      Page(s):
    1204-1214

    In this paper, a Stochastic Collocation Algorithm combined with Sparse Grid technique (SSCA) is proposed to deal with the periodic steady-state analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the moment-matching parameterized model order reduction (PMOR) which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs Homogeneous Chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or Wavelet Bases to model the steady-state behavior in time domain. Secondly, contrary to Stochastic Galerkin Algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from Efficient Collocation Method, the heuristic approach which may result in "Rank deficient problem" and "Runge phenomenon," Sparse Grid technique is developed to select the collocation points needed in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steady-state analysis, it can be applied to any other kind of nonlinear system simulation with process variations, such as transient analysis, etc.

  • Performance of TOA-AOA Hybrid Mobile Location

    Hing Cheung SO  Estella Man Kit SHIU  

     
    LETTER-Digital Signal Processing

      Vol:
    E86-A No:8
      Page(s):
    2136-2138

    Mobile location can be achieved by using the time-of-arrival (TOA) and angle-of-arrival (AOA) measurements. In this Letter, we analyze the location accuracy of an TOA-AOA hybrid algorithm with a single base station in the line-of-sight scenario. The performance of the algorithm is contrasted with the Cramer-Rao lower bound and Federal Communications Commission Emergency 911 requirements.

  • An MAC Protocol for Non-Real-Time Burst Traffic in Wireless ATM Networks

    In-Taek LIM  

     
    PAPER

      Vol:
    E85-B No:10
      Page(s):
    1996-2001

    In this paper, a contention-based reservation MAC protocol is proposed for non-real-time burst traffic class in wireless ATM networks. The proposed protocol is characterized by the contention-based transmission of the reservation request and contention-free transmission of burst traffic. The design objective of the proposed protocol is to reduce contention delay during the contention phase of a connection. In order to reduce collision of reservation requests, the base station calculates the transmission probability based on the estimated load of reservation requests and the number of random access minislots, and broadcasts it over the frame header period of downlink channel. Wireless terminal, which has traffic burst, selects a random access minislot and transmits its reservation request with a received transmission probability. Based on the successfully received reservation, the scheduler allocates the uplink data slots to wireless terminal. Simulation results show that the proposed protocol can provide higher channel utilization, and furthermore, maintains constant delay performance in a heavy traffic environment.

  • Coterie for Generalized Mutual Exclusion Problem

    Shao Chin SUNG  Yoshifumi MANABE  

     
    PAPER-Computer Systems

      Vol:
    E82-D No:5
      Page(s):
    968-972

    This paper discusses the generalized mutual exclusion problem defined by H. Kakugawa and M. Yamashita. A set of processes shares a set of resources of an identical type. Each resource must be accessed by at most one process at any time. Each process may have different accessible resources. If two processes have no common accessible resource, it is reasonable to ensure a condition in resource allocation, which is called allocation independence in this paper, i. e. , resource allocation to those processes must be performed without any interference. In this paper, we define a new structure, sharing structure coterie. By using a sharing structure coterie, the resource allocation algorithm proposed by H. Kakugawa and M. Yamashita ensures the above condition. We show a necessary and sufficient condition of the existence of a sharing structure coterie. The decision of the existence of a sharing structure coterie for an arbitrary distributed system is NP-complete. Furthermore, we show a resource allocation algorithm which guarantees the above requirement for distributed systems whose sharing structure coteries do not exist or are difficult to obtain.

  • Channel Allocation Algorithms for Multislot TDMA with Multiclass Users

    Theodore BUOT  Fujio WATANABE  

     
    PAPER-Access, Network

      Vol:
    E79-B No:3
      Page(s):
    244-250

    This paper proposed a method of slot allocation in a multislot TDMA system when multiple service priorities are supported. The algorithm is tested both in Variable Rate Reservation Access (VRRA) and Advanced TDMA protocols. We exploit the multislot reservation capability to achieve the delay requirements of each priority level. The channel allocation algorithm assumed that all data terminals are capable of multislot reservation. In this case the delay variance can be controlled based on the packet length information and the accumulated delay of each data user. The performance of the system is evaluated using the cumulative delay distribution and mean overall delays for the different user types.