The search functionality is under construction.

Keyword Search Result

[Keyword] low-density parity-check codes(22hit)

1-20hit(22hit)

  • Fast Converging ADMM Penalized Decoding Method Based on Improved Penalty Function for LDPC Codes

    Biao WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2020/05/08
      Vol:
    E103-A No:11
      Page(s):
    1304-1307

    For low-density parity-check (LDPC) codes, the penalized decoding method based on the alternating direction method of multipliers (ADMM) can improve the decoding performance at low signal-to-noise ratios and also has low decoding complexity. There are three effective methods that could increase the ADMM penalized decoding speed, which are reducing the number of Euclidean projections in ADMM penalized decoding, designing an effective penalty function and selecting an appropriate layered scheduling strategy for message transmission. In order to further increase the ADMM penalized decoding speed, through reducing the number of Euclidean projections and using the vertical layered scheduling strategy, this paper designs a fast converging ADMM penalized decoding method based on the improved penalty function. Simulation results show that the proposed method not only improves the decoding performance but also reduces the average number of iterations and the average decoding time.

  • A Fast Iterative Check Polytope Projection Algorithm for ADMM Decoding of LDPC Codes by Bisection Method Open Access

    Yan LIN  Qiaoqiao XIA  Wenwu HE  Qinglin ZHANG  

     
    LETTER-Information Theory

      Vol:
    E102-A No:10
      Page(s):
    1406-1410

    Using linear programming (LP) decoding based on alternating direction method of multipliers (ADMM) for low-density parity-check (LDPC) codes shows lower complexity than the original LP decoding. However, the development of the ADMM-LP decoding algorithm could still be limited by the computational complexity of Euclidean projections onto parity check polytope. In this paper, we proposed a bisection method iterative algorithm (BMIA) for projection onto parity check polytope avoiding sorting operation and the complexity is linear. In addition, the convergence of the proposed algorithm is more than three times as fast as the existing algorithm, which can even be 10 times in the case of high input dimension.

  • Efficient Early Termination Criterion for ADMM Penalized LDPC Decoder

    Biao WANG  Xiaopeng JIAO  Jianjun MU  Zhongfei WANG  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    623-626

    By tracking the changing rate of hard decisions during every two consecutive iterations of the alternating direction method of multipliers (ADMM) penalized decoding, an efficient early termination (ET) criterion is proposed to improve the convergence rate of ADMM penalized decoder for low-density parity-check (LDPC) codes. Compared to the existing ET criterion for ADMM penalized decoding, the proposed method can reduce the average number of iterations significantly at low signal-to-noise ratios with negligible performance degradation.

  • An Efficient Weighted Bit-Flipping Algorithm for Decoding LDPC Codes Based on Log-Likelihood Ratio of Bit Error Probability

    Tso-Cho CHEN  Erl-Huei LU  Chia-Jung LI  Kuo-Tsang HUANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/05/29
      Vol:
    E100-B No:12
      Page(s):
    2095-2103

    In this paper, a weighted multiple bit flipping (WMBF) algorithman for decoding low-density parity-check (LDPC) codes is proposed first. Then the improved WMBF algorithm which we call the efficient weighted bit-flipping (EWBF) algorithm is developed. The EWBF algorithm can dynamically choose either multiple bit-flipping or single bit-flipping in each iteration according to the log-likelihood ratio of the error probability of the received bits. Thus, it can efficiently increase the convergence speed of decoding and prevent the decoding process from falling into loop traps. Compared with the parallel weighted bit-flipping (PWBF) algorithm, the EWBF algorithm can achieve significantly lower computational complexity without performance degradation when the Euclidean geometry (EG)-LDPC codes are decoded. Furthermore, the flipping criterion does not require any parameter adjustment.

  • Linear Programming Decoding of Binary Linear Codes for Symbol-Pair Read Channel

    Shunsuke HORII  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E99-A No:12
      Page(s):
    2170-2178

    In this study, we develop a new algorithm for decoding binary linear codes for symbol-pair read channels. The symbol-pair read channel was recently introduced by Cassuto and Blaum to model channels with higher write resolutions than read resolutions. The proposed decoding algorithm is based on linear programming (LP). For LDPC codes, the proposed algorithm runs in time polynomial in the codeword length. It is proved that the proposed LP decoder has the maximum-likelihood (ML) certificate property, i.e., the output of the decoder is guaranteed to be the ML codeword when it is integral. We also introduce the fractional pair distance dfp of the code, which is a lower bound on the minimum pair distance. It is proved that the proposed LP decoder corrects up to ⌈dfp/2⌉-1 errors.

  • A 5.83pJ/bit/iteration High-Parallel Performance-Aware LDPC Decoder IP Core Design for WiMAX in 65nm CMOS

    Xiongxin ZHAO  Zhixiang CHEN  Xiao PENG  Dajiang ZHOU  Satoshi GOTO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2623-2632

    In this paper, we propose a synthesizable LDPC decoder IP core for the WiMAX system with high parallelism and enhanced error-correcting performance. By taking the advantages of both layered scheduling and fully-parallel architecture, the decoder can fully support multi-mode decoding specified in WiMAX with the parallelism much higher than commonly used partial-parallel layered LDPC decoder architecture. 6-bit quantized messages are split into bit-serial style and 2bit-width serial processing lines work concurrently so that only 3 cycles are required to decode one layer. As a result, 12∼24 cycles are enough to process one iteration for all the code-rates specified in WiMAX. Compared to our previous bit-serial decoder, it doubles the parallelism and solves the message saturation problem of the bit-serial arithmetic, with minor gate count increase. Power synthesis result shows that the proposed decoder achieves 5.83pJ/bit/iteration energy efficiency which is 46.8% improvement compared to state-of-the-art work. Furthermore, an advanced dynamic quantization (ADQ) technique is proposed to enhance the error-correcting performance in layered decoder architecture. With about 2% area overhead, 6-bit ADQ can achieve the error-correcting performance close to 7-bit fixed quantization with improved error floor performance.

  • Hybrid Message-Passing Algorithm and Architecture for Decoding Cyclic Non-binary LDPC Codes

    Yichao LU  Gang HE  Guifen TIAN  Satoshi GOTO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2652-2659

    Recently, non-binary low-density parity-check (NB-LDPC) codes starts to show their superiority in achieving significant coding gains when moderate codeword lengths are adopted. However, the overwhelming decoding complexity keeps NB-LDPC codes from being widely employed in modern communication devices. This paper proposes a hybrid message-passing decoding algorithm which consumes very low computational complexity. It achieves competitive error performance compared with conventional Min-max algorithm. Simulation result on a (255,174) cyclic code shows that this algorithm obtains at least 0.5dB coding gain over other state-of-the-art low-complexity NB-LDPC decoding algorithms. A partial-parallel NB-LDPC decoder architecture for cyclic NB-LDPC codes is also developed based on this algorithm. Optimization schemes are employed to cut off hard decision symbols in RAMs and also to store only part of the reliability messages. In addition, the variable node units are redesigned especially for the proposed algorithm. Synthesis results demonstrate that about 24.3% gates and 12% memories can be saved over previous works.

  • Design and Implementation of Long High-Rate QC-LDPC Codes and Its Applications to Optical Transmission Systems

    Norifumi KAMIYA  Yoichi HASHIMOTO  Masahiro SHIGIHARA  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:6
      Page(s):
    1402-1411

    In this paper, we present a novel class of long quasi-cyclic low-density parity-check (QC-LDPC) codes. Each of the codes in this class has a structure formed by concatenating single-parity-check codes and QC-LDPC codes of shorter lengths, which allows for efficient, high throughput encoder/decoder implementations. Using a code in this class, we design a forward error correction (FEC) scheme for optical transmission systems and present its high throughput encoder/decoder architecture. In order to demonstrate its feasibility, we implement the architecture on a field programmable gate array (FPGA) platform. We show by both FPGA-based simulations and measurements of an optical transmission system that the FEC scheme can achieve excellent error performance and that there is no significant performance degradation due to the constraint on its structure while getting an efficient, high throughput implementation is feasible.

  • Iterative Decoding for the Davey-MacKay Construction over IDS-AWGN Channel

    Xiaopeng JIAO  Jianjun MU  Rong SUN  

     
    LETTER-Coding Theory

      Vol:
    E96-A No:5
      Page(s):
    1006-1009

    Turbo equalization is an iterative equalization and decoding technique that can achieve impressive performance gains for communication systems. In this letter, we investigate the turbo equalization method for the decoding of the Davey-MacKay (DM) construction over the IDS-AWGN channels, which indicates a cascaded insertion, deletion, substitution (IDS) channel and an additive white Gaussian noise (AWGN) channel. The inner decoder for the DM construction can be seen as an maximum a-posteriori (MAP) detector. It receives the beliefs generated by the outer LDPC decoder when turbo equalization is used. Two decoding schemes with different kinds of inner decoders, namely hard-input inner decoder and soft-input inner decoder, are investigated. Simulation results show that significant performance gains are obtained for both decoders with respect to the insertion/deletion probability at different SNR values.

  • A Numerical Evaluation of Entanglement Sharing Protocols Using Quantum LDPC CSS Codes

    Masakazu YOSHIDA  Manabu HAGIWARA  Takayuki MIYADERA  Hideki IMAI  

     
    PAPER-Information Theory

      Vol:
    E95-A No:9
      Page(s):
    1561-1569

    Entangled states play crucial roles in quantum information theory and its applied technologies. In various protocols such as quantum teleportation and quantum key distribution, a good entangled state shared by a pair of distant players is indispensable. In this paper, we numerically examine entanglement sharing protocols using quantum LDPC CSS codes. The sum-product decoding method enables us to detect uncorrectable errors, and thus, two protocols, Detection and Resending (DR) protocol and Non-Detection (ND) protocol are considered. In DR protocol, the players abort the protocol and repeat it if they detect the uncorrectable errors, whereas in ND protocol they do not abort the protocol. We show that DR protocol yields smaller error rate than ND protocol. In addition, it is shown that rather high reliability can be achieved by DR protocol with quantum LDPC CSS codes.

  • Continuous BP Decoding Algorithm for a Low-Density Parity-Check Coded Hybrid ARQ System

    Sangjoon PARK  Sooyong CHOI  Seung-Hoon HWANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:4
      Page(s):
    993-996

    A continuous belief propagation (BP) decoding algorithm for a hybrid automatic repeat request (ARQ) system is proposed in this paper. The proposed continuous BP decoding algorithm utilizes the extrinsic information generated in the last iteration of the previous transmission for a continuous progression of the decoding through retransmissions. This allows the continuous BP decoding algorithm to accelerate the decoding convergence for codeword determination, especially when the number of retransmissions is large or a currently combined packet has punctured nodes. Simulation results verify the effectiveness of the proposed continuous BP decoding algorithm.

  • Complexity-Reducing Algorithm for Serial Scheduled Min-Sum Decoding of LDPC Codes

    Hironori UCHIKAWA  Kohsuke HARADA  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:10
      Page(s):
    2411-2417

    We propose a complexity-reducing algorithm for serial scheduled min-sum decoding that reduces the number of check nodes to process during an iteration. The check nodes to skip are chosen based on the reliability, a syndrome and a log-likelihood-ratio (LLR) value, of the incoming messages. The proposed algorithm is evaluated by computer simulations and shown to reduce the decoding complexity about 20% compared with a conventional serial scheduled min-sum decoding with small fractional decibel degradation in error correction performance.

  • The Necessary and Sufficient Condition of a Class of Quasi-Cyclic LDPC Codes without Girth Four

    Ying ZHAO  Yang XIAO  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:1
      Page(s):
    306-309

    This letter presents a necessary and sufficient condition for a class of quasi-cyclic low-density parity-check (QC LDPC) codes without girth four. Girth-four property of a class of QC LDPC codes is investigated. Good QC LDPC codes without girth four can be constructed by selecting proper shifting factors according to the proposed theorems. Examples are provided to verify the theorems. The simulation results show that the QC LDPC codes without girth four achieve a better BER performance compared with that of randomly constructed LDPC codes.

  • Sufficient Conditions for a Regular LDPC Code Better than an Irregular LDPC Code

    Shinya MIYAMOTO  Kenta KASAI  Kohichi SAKANIWA  

     
    LETTER-Coding Theory

      Vol:
    E90-A No:2
      Page(s):
    531-534

    Decoding performance of LDPC (Low-Density Parity-Check) codes is highly dependent on the degree distributions of the Tanner graphs which define the LDPC codes. We compare two LDPC code ensembles, one has a uniform degree distribution and the other a non-uniform one over a BEC (Binary Erasure Channel) and a BSC (Binary Symmetric Channel) thorough DE (Density Evolution). We then derive sufficient conditions on the erasure probability of a BEC and the error probability of a BSC, under which the LDPC code ensembles with uniform degree distributions outperform those with non-uniform degree distributions.

  • Power-Efficient LDPC Decoder Architecture Based on Accelerated Message-Passing Schedule

    Kazunori SHIMIZU  Tatsuyuki ISHIKAWA  Nozomu TOGAWA  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER-VLSI Architecture

      Vol:
    E89-A No:12
      Page(s):
    3602-3612

    In this paper, we propose a power-efficient LDPC decoder architecture based on an accelerated message-passing schedule. The proposed decoder architecture is characterized as follows: (i) Partitioning a pipelined operation not to read and write intermediate messages simultaneously enables the accelerated message-passing schedule to be implemented with single-port SRAMs. (ii) FIFO-based buffering reduces the number of SRAM banks and words of the LDPC decoder based on the accelerated message-passing schedule. The proposed LDPC decoder keeps a single message for each non-zero bit in a parity check matrix as well as a classical schedule while achieving the accelerated message-passing schedule. Implementation results in 0.18 [µm] CMOS technology show that the proposed decoder architecture reduces an area of the LDPC decoder by 43% and a power dissipation by 29% compared to the conventional architecture based on the accelerated message-passing schedule.

  • Average Coset Weight Distribution of Multi-Edge Type LDPC Code Ensembles

    Kenta KASAI  Yuji SHIMOYAMA  Tomoharu SHIBUYA  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:10
      Page(s):
    2519-2525

    Multi-Edge type Low-Density Parity-Check codes (MET-LDPC codes) introduced by Richardson and Urbanke are generalized LDPC codes which can be seen as LDPC codes obtained by concatenating several standard (ir)regular LDPC codes. We prove in this paper that MET-LDPC code ensembles possess a certain symmetry with respect to their Average Coset Weight Distributions (ACWD). Using this symmetry, we drive ACWD of MET-LDPC code ensembles from ACWD of their constituent ensembles.

  • Partially-Parallel LDPC Decoder Achieving High-Efficiency Message-Passing Schedule

    Kazunori SHIMIZU  Tatsuyuki ISHIKAWA  Nozomu TOGAWA  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER

      Vol:
    E89-A No:4
      Page(s):
    969-978

    In this paper, we propose a partially-parallel LDPC decoder which achieves a high-efficiency message-passing schedule. The proposed LDPC decoder is characterized as follows: (i) The column operations follow the row operations in a pipelined architecture to ensure that the row and column operations are performed concurrently. (ii) The proposed parallel pipelined bit functional unit enables the column operation module to compute every message in each bit node which is updated by the row operations. These column operations can be performed without extending the single iterative decoding delay when the row and column operations are performed concurrently. Therefore, the proposed decoder performs the column operations more frequently in a single iterative decoding, and achieves a high-efficiency message-passing schedule within the limited decoding delay time. Hardware implementation on an FPGA and simulation results show that the proposed partially-parallel LDPC decoder improves the decoding throughput and bit error performance with a small hardware overhead.

  • Irregular Low-Density Convolutional Codes

    Linhua MA  Jun LIU  Yilin CHANG  

     
    LETTER-Coding Theory

      Vol:
    E88-A No:8
      Page(s):
    2240-2243

    A method for constructing low-density convolutional (LDC) codes with the degree distribution optimized for block low-density parity-check (LDPC) codes is presented. If the degree distribution is irregular, the constructed LDC codes are also irregular. In this letter we give the encoding and decoding method for LDC codes, and study how to avoid the short cycles of LDC codes. Some simulation results are also presented.

  • Low-Density Parity-Check (LDPC) Coded OFDM Systems: Bit Error Rate and the Number of Decoding Iterations

    Hisashi FUTAKI  Tomoaki OHTSUKI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:11
      Page(s):
    3310-3316

    In this letter, we propose the Low-Density Parity-Check (LDPC) coded Orthogonal Frequency Division Multiplexing (OFDM) systems to improve the error rate performance of OFDM. We also evaluate the iterative decoding performance on both an AWGN and a frequency-selective fading channels. We show that when the energy per information bit to the noise power spectral density ratio Eb/N0 is not small, the LDPC coded OFDM (LDPC-COFDM) systems have the good error rate performance with a small number of iterations. We also show that when the Eb/N0 is small, the BER of the LDPC-COFDM systems is worse than that of the Turbo coded OFDM (TCOFDM) systems, while when the Eb/N0 is not small, the BER of the LDPC-COFDM systems is better with a small number of iterations.

  • Space-Time Transmit Diversity Schemes with Low-Density Parity-Check (LDPC) Codes

    Hisashi FUTAKI  Tomoaki OHTSUKI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:10
      Page(s):
    3131-3136

    Space-time transmit diversity (STTD) and space-time block coding (STBC) are attractive techniques for high bit-rate and high capacity transmission. The concatenation scheme of turbo codes and STBC (Turbo-STBC) was proposed and it has been shown that the Turbo-STBC can achieve the good error rate performance. Recently, low-density parity-check (LDPC) codes have attracted much attention as the good error correcting codes achieving the near Shannon limit performance like turbo codes. The decoding algorithm of LDPC codes has less complexity than that of turbo codes. Furthermore, when the block length is large, the error rate performance of the LDPC codes is better than that of the turbo codes with almost identical code rate and block length. In this letter, we propose a concatenation scheme of LDPC codes and STBC. We refer to it as the LDPC-STBC. We evaluate the error rate performance of the LDPC-STBC by the computer simulation and show that the error rate performance of the LDPC-STBC is almost identical to or better than that of the Turbo-STBC in a flat Rayleigh fading channel.

1-20hit(22hit)