The search functionality is under construction.

Author Search Result

[Author] Jun LIU(28hit)

1-20hit(28hit)

  • Joint User Association and Spectrum Allocation in Satellite-Terrestrial Integrated Networks

    Wenjing QIU  Aijun LIU  Chen HAN  Aihong LU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/15
      Vol:
    E105-B No:9
      Page(s):
    1063-1077

    This paper investigates the joint problem of user association and spectrum allocation in satellite-terrestrial integrated networks (STINs), where a low earth orbit (LEO) satellite access network cooperating with terrestrial networks constitutes a heterogeneous network, which is beneficial in terms of both providing seamless coverage as well as improving the backhaul capacity for the dense network scenario. However, the orbital movement of satellites results in the dynamic change of accessible satellites and the backhaul capacities. Moreover, spectrum sharing may be faced with severe co-channel interferences (CCIs) caused by overlapping coverage of multiple access points (APs). This paper aims to maximize the total sum rate considering the influences of the dynamic feature of STIN, backhaul capacity limitation and interference management. The optimization problem is then decomposed into two subproblems: resource allocation for terrestrial communications and satellite communications, which are both solved by matching algorithms. Finally, simulation results show the effectiveness of our proposed scheme in terms of STIN's sum rate and spectrum efficiency.

  • Digital Color Image Contrast Enhancement Method Based on Luminance Weight Adjustment

    Yuyao LIU  Shi BAO  Go TANAKA  Yujun LIU  Dongsheng XU  

     
    PAPER-Image

      Pubricized:
    2021/11/30
      Vol:
    E105-A No:6
      Page(s):
    983-993

    When collecting images, owing to the influence of shooting equipment, shooting environment, and other factors, often low-illumination images with insufficient exposure are obtained. For low-illumination images, it is necessary to improve the contrast. In this paper, a digital color image contrast enhancement method based on luminance weight adjustment is proposed. This method improves the contrast of the image and maintains the detail and nature of the image. In the proposed method, the illumination of the histogram equalization image and the adaptive gamma correction with weighted distribution image are adjusted by the luminance weight of w1 to obtain a detailed image of the bright areas. Thereafter, the suppressed multi-scale retinex (MSR) is used to process the input image and obtain a detailed image of the dark areas. Finally, the luminance weight w2 is used to adjust the illumination component of the detailed images of the bright and dark areas, respectively, to obtain the output image. The experimental results show that the proposed method can enhance the details of the input image and avoid excessive enhancement of contrast, which maintains the naturalness of the input image well. Furthermore, we used the discrete entropy and lightness order error function to perform a numerical evaluation to verify the effectiveness of the proposed method.

  • Non-iterative Frequency Estimator Based on Approximation of the Wiener-Khinchin Theorem

    Cui YANG  Lingjun LIU  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:4
      Page(s):
    1021-1025

    A closed form frequency estimator is derived for estimating the frequency of a complex exponential signal, embedded in white Gaussian noise. The new estimator consists of the fast Fourier transform (FFT) as the coarse estimation and the phase of autocorrelation lags as the fine-frequency estimator. In the fine-frequency estimation, autocorrelations are calculated from the power-spectral density of the signal, based on the Wiener-Khinchin theorem. For simplicity and suppressing the effect of noise, only the spectrum lines around the actual tone are used. Simulation results show that, the performance of the proposed estimator is approaching the Cramer-Rao Bound (CRB), and has a lower SNR threshold compared with other existing estimators.

  • Lempel-Ziv Factorization in Linear-Time O(1)-Workspace for Constant Alphabets

    Weijun LIU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/08/30
      Vol:
    E104-D No:12
      Page(s):
    2145-2153

    Computing the Lempel-Ziv Factorization (LZ77) of a string is one of the most important problems in computer science. Nowadays, it has been widely used in many applications such as data compression, text indexing and pattern discovery, and already become the heart of many file compressors like gzip and 7zip. In this paper, we show a linear time algorithm called Xone for computing the LZ77, which has the same space requirement with the previous best space requirement for linear time LZ77 factorization called BGone. Xone greatly improves the efficiency of BGone. Experiments show that the two versions of Xone: XoneT and XoneSA are about 27% and 31% faster than BGoneT and BGoneSA, respectively.

  • Play-Out Constrained Dynamic Packet Loss Protection for Scalable Video Transmission

    Jun LIU  Yu ZHANG  Jian SONG  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E96-B No:6
      Page(s):
    1633-1642

    This paper analyzes the conventional unequal erasure protection (UXP) scheme for scalable video transmission, and proposes a dynamic hybrid UXP/ARQ transmission framework to improve the performance of the conventional UXP method for bandwidth-constrained scalable video transmission. This framework applies automatic retransmission request (ARQ) to the conventional UXP scheme for scalable video transmission, and dynamically adjusts the transmission time budget of each group of picture (GOP) according to the feedback about the transmission results of the current and previous GOPs from the receiver. Moreover, the parameter of target video quality is introduced and optimized to adapt to the channel condition in pursuit of more efficient dynamic time allocation. In addition, considering the play-out deadline constraint, the time schedule for the proposed scalable video transmission system is presented. Simulation results show that compared with the conventional UXP scheme and its enhanced method, the average peak signal to noise ratio (PSNR) of the reconstructed video can be improved significantly over a wide range of packet loss rates. Besides, the visual quality fluctuation among the GOPs can be reduced for the video which has much movement change.

  • The Liveness of WS3PR: Complexity and Decision

    GuanJun LIU  ChangJun JIANG  MengChu ZHOU  Atsushi OHTA  

     
    PAPER-Concurrent Systems

      Vol:
    E96-A No:8
      Page(s):
    1783-1793

    Petri nets are a kind of formal language that are widely applied in concurrent systems associated with resource allocation due to their abilities of the natural description on resource allocation and the precise characterization on deadlock. Weighted System of Simple Sequential Processes with Resources (WS3PR) is an important subclass of Petri nets that can model many resource allocation systems in which 1) multiple processes may run in parallel and 2) each execution step of each process may use multiple units from a single resource type but cannot use multiple resource types. We first prove that the liveness problem of WS3PR is co-NP-hard on the basis of the partition problem. Furthermore, we present a necessary and sufficient condition for the liveness of WS3PR based on two new concepts called Structurally Circular Wait (SCW) and Blocking Marking (BM), i.e., a WS3PR is live iff each SCW has no BM. A sufficient condition is also proposed to guarantee that an SCW has no BM. Additionally, we show some advantages of using SCW to analyze the deadlock problem compared to other siphon-based ones, and discuss the relation between SCW and siphon. These results are valuable to the further research on the deadlock prevention or avoidance for WS3PR.

  • Adaptive HARQ Transmission of Polar Codes with a Common Information Set

    Hao LIANG  Aijun LIU  Heng WANG  Kui XU  

     
    LETTER-Coding Theory

      Vol:
    E103-A No:2
      Page(s):
    553-555

    This Letter explores the adaptive hybrid automatic repeat request (HARQ) using rate-compatible polar codes constructed with a common information set. The rate adaptation problem is formulated using Markov decision process and solved by a dynamic programming framework in a low-complexity way. Simulation verifies the throughput efficiency of the proposed adaptive HARQ.

  • Gravity Wave Observation Experiment Based on High Frequency Surface Wave Radar

    Zhe LYU  Changjun YU  Di YAO  Aijun LIU  Xuguang YANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/04/05
      Vol:
    E104-A No:10
      Page(s):
    1416-1420

    Observations of gravity waves based on High Frequency Surface Wave Radar can make contributions to a better understanding of the energy transfer process between the ocean and the ionosphere. In this paper, through processing the observed data of the ionospheric clutter from HFSWR during the period of the Typhoon Rumbia with short-time Fourier transform method, HFSWR was proven to have the capability of gravity wave detection.

  • HTS Cavity and Low Phase Noise Oscillator for Radar Application

    Hong LI  Tiefeng SHI  Aisheng HE  Chunguang LI  Zhonglin GONG  Zhengfang FAN  Tiejun LIU  Yusheng HE  

     
    PAPER-Microwave Devices and Systems

      Vol:
    E85-C No:3
      Page(s):
    700-703

    A stabilized local oscillator is one of the key components for any radar system, especially for a Doppler radar in detecting slowly moving targets. Based on hybrid semiconductor/superconductor circuitry, the HTS local oscillator produces stable, low noise performance superior to that achieved with conventional technology. The device combines a high Q HTS sapphire cavity resonator (f=5.6 GHz) with a C-band low noise GsAs HEMT amplifier. The phase noise of the oscillator, measured by a HP 3048A noise measurement system, is -134 dBc/Hz at 10 kHz offset at 77 K.

  • Beamforming Design for Energy Efficiency Maximization in MISO Channels

    Jun LIU  Hongbo XU  Aizi ZHOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1189-1195

    This paper considers the beamforming design for energy efficiency transmission over multiple-input and single-output (MISO) channels. The energy efficiency maximization problem is non-convex due to the fractional form in its objective function. In this paper, we propose an efficient method to transform the objective function in fractional form into the difference of two concave functions (DC) form, which can be solved by the successive convex approximation (SCA) algorithm. Then we apply the proposed transformation and pricing mechanism to develop a distributed beamforming optimization for multiuser MISO interference channels, where each user solves its optimization problem independently and only limited information exchange is needed. Numerical results show the effectiveness of our proposed algorithm.

  • RPCA-Based Radio Interference Cancellation Algorithm for Compact HF Surface Wave Radar

    Di YAO  Aijun LIU  Hongzhi LI  Changjun YU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/10/15
      Vol:
    E104-A No:4
      Page(s):
    757-761

    In the user-congested high-frequency band, radio frequency interference (RFI) is a dominant factor that degrades the detection performance of high-frequency surface wave radar (HFSWR). Up to now, various RFI suppression algorithms have been proposed while they are usually inapplicable to the compact HFSWR because of the minimal array aperture. Therefore, this letter proposes a novel RFI mitigation scheme for compact HFSWR, even for single antenna. The scheme utilized the robust principal component analysis to separate RFI and target, based on the time-frequency distribution characteristics of the RFI. The effectiveness of this scheme is demonstrated by the measured data, which can effectively suppress RFI without losing target signal.

  • Detecting Transportation Modes Using Deep Neural Network

    Hao WANG  GaoJun LIU  Jianyong DUAN  Lei ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/02/15
      Vol:
    E100-D No:5
      Page(s):
    1132-1135

    Existing studies on transportation mode detection from global positioning system (GPS) trajectories mainly adopt handcrafted features. These features require researchers with a professional background and do not always work well because of the complexity of traffic behavior. To address these issues, we propose a model using a sparse autoencoder to extract point-level deep features from point-level handcrafted features. A convolution neural network then aggregates the point-level deep features and generates a trajectory-level deep feature. A deep neural network incorporates the trajectory-level handcrafted features and the trajectory-level deep feature for detecting the users' transportation modes. Experiments conducted on Microsoft's GeoLife data show that our model can automatically extract the effective features and improve the accuracy of transportation mode detection. Compared with the model using only handcrafted features and shallow classifiers, the proposed model increases the maximum accuracy by 6%.

  • Double-Scale Channel Prediction for Precoded TDD-MIMO Systems

    De-Chun SUN  Zu-Jun LIU  Ke-Chu YI  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E96-A No:3
      Page(s):
    745-746

    In precoded TDD MIMO systems, precoding is done based on the downlink CSI, which can be predicted according to the outdated uplink CSI. This letter proposes a double-scale channel prediction scheme where frame-scale Kalman filters and pilot-symbol-scale AR predictors jointly predict the needed downlink CSI.

  • The Comparison of Attention Mechanisms with Different Embedding Modes for Performance Improvement of Fine-Grained Classification

    Wujian YE  Run TAN  Yijun LIU  Chin-Chen CHANG  

     
    PAPER-Core Methods

      Pubricized:
    2021/12/22
      Vol:
    E106-D No:5
      Page(s):
    590-600

    Fine-grained image classification is one of the key basic tasks of computer vision. The appearance of traditional deep convolutional neural network (DCNN) combined with attention mechanism can focus on partial and local features of fine-grained images, but it still lacks the consideration of the embedding mode of different attention modules in the network, leading to the unsatisfactory result of classification model. To solve the above problems, three different attention mechanisms are introduced into the DCNN network (like ResNet, VGGNet, etc.), including SE, CBAM and ECA modules, so that DCNN could better focus on the key local features of salient regions in the image. At the same time, we adopt three different embedding modes of attention modules, including serial, residual and parallel modes, to further improve the performance of the classification model. The experimental results show that the three attention modules combined with three different embedding modes can improve the performance of DCNN network effectively. Moreover, compared with SE and ECA, CBAM has stronger feature extraction capability. Among them, the parallelly embedded CBAM can make the local information paid attention to by DCNN richer and more accurate, and bring the optimal effect for DCNN, which is 1.98% and 1.57% higher than that of original VGG16 and Resnet34 in CUB-200-2011 dataset, respectively. The visualization analysis also indicates that the attention modules can be easily embedded into DCNN networks, especially in the parallel mode, with stronger generality and universality.

  • Joint Transceiver Optimization for Multiuser MIMO Amplify-and-Forward Relay Broadcast Systems

    Jun LIU  Xiong ZHANG  Zhengding QIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1443-1447

    This letter considers a dual-hop multiuser MIMO amplify-and-forward relay broadcast system with multi-antenna nodes. A unified scheme is addressed to jointly optimize the linear transceiver based on the sum mean-square error (MSE) and the sum rate criterion. The solutions are iteratively obtained by deriving the gradients of the objective functions for a gradient descent algorithm. Simulation results demonstrate the performance improvements in terms of the BER and the sum rate.

  • Irregular Low-Density Convolutional Codes

    Linhua MA  Jun LIU  Yilin CHANG  

     
    LETTER-Coding Theory

      Vol:
    E88-A No:8
      Page(s):
    2240-2243

    A method for constructing low-density convolutional (LDC) codes with the degree distribution optimized for block low-density parity-check (LDPC) codes is presented. If the degree distribution is irregular, the constructed LDC codes are also irregular. In this letter we give the encoding and decoding method for LDC codes, and study how to avoid the short cycles of LDC codes. Some simulation results are also presented.

  • A Novel Earthquake Education System Based on Virtual Reality

    Xiaoli GONG  Yanjun LIU  Yang JIAO  Baoji WANG  Jianchao ZHOU  Haiyang YU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2015/09/16
      Vol:
    E98-D No:12
      Page(s):
    2242-2249

    An earthquake is a destructive natural disaster, which cannot be predicted accurately and causes devastating damage and losses. In fact, many of the damages can be prevented if people know what to do during and after earthquakes. Earthquake education is the most important method to raise public awareness and mitigate the damage caused by earthquakes. Generally, earthquake education consists of conducting traditional earthquake drills in schools or communities and experiencing an earthquake through the use of an earthquake simulator. However, these approaches are unrealistic or expensive to apply, especially in underdeveloped areas where earthquakes occur frequently. In this paper, an earthquake drill simulation system based on virtual reality (VR) technology is proposed. A User is immersed in a 3D virtual earthquake environment through a head mounted display and is able to control the avatar in a virtual scene via Kinect to respond to the simulated earthquake environment generated by SIGVerse, a simulation platform. It is a cost effective solution and is easy to deploy. The design and implementation of this VR system is proposed and a dormitory earthquake simulation is conducted. Results show that powerful earthquakes can be simulated successfully and the VR technology can be applied in the earthquake drills.

  • Unbiased Interference Suppression Method Based on Spectrum Compensation Open Access

    Jian WU  Xiaomei TANG  Zengjun LIU  Baiyu LI  Feixue WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/07/16
      Vol:
    E103-B No:1
      Page(s):
    52-59

    The major weakness of global navigation satellite system receivers is their vulnerability to intentional and unintentional interference. Frequency domain interference suppression (FDIS) technology is one of the most useful countermeasures. The pseudo-range measurement is unbiased after FDIS filtering given an ideal analog channel. However, with the influence of the analog modules used in RF front-end, the amplitude response and phase response of the channel equivalent filter are non-ideal, which bias the pseudo-range measurement after FDIS filtering and the bias varies along with the frequency of the interference. This paper proposes an unbiased interference suppression method based on signal estimation and spectrum compensation. The core idea is to use the parameters calculated from the tracking loop to estimate and reconstruct the desired signal. The estimated signal is filtered by the equivalent filter of actual channel, then it is used for compensating the spectrum loss caused by the FDIS method in the frequency domain. Simulations show that the proposed algorithm can reduce the pseudo-range measurement bias significantly, even for channels with asymmetrical group delay and multiple interference sources at any location.

  • Failure Microscope: Precisely Diagnosing Routing Instability

    Hongjun LIU  Baokang ZHAO  Xiaofeng HU  Dan ZHAO  Xicheng LU  

     
    PAPER-Information Network

      Vol:
    E96-D No:4
      Page(s):
    918-926

    Root cause analysis of BGP updates is the key to debug and troubleshoot BGP routing problems. However, it is a challenge to precisely diagnose the cause and the origin of routing instability. In this paper, we are the first to distinguish link failure events from policy change events based on BGP updates from single vantage points by analyzing the relationship of the closed loops formed through intersecting all the transient paths during instability and the length variation of the stable paths after instability. Once link failure events are recognized, their origins are precisely inferred with 100% accuracy. Through simulation, our method is effective to distinguish link failure events from link restoration events and policy related events, and reduce the size of candidate set of origins.

  • An Efficient Selective Receiver Switching Scheme for STBC with Full Code Rate and Non Orthogonal Design

    Lijun LIU  Myoung-Seob LIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2041-2044

    In the design of Space Time Block Coding (STBC), for an arbitrary complex signal constellation with a size above 2 as well as a real signal matrix with a size above 8, it is difficult to acquire full code rate and full transmit diversity simultaneously. In this letter, an efficient selective receiver switching scheme is proposed for STBC with the full code rate and non-orthogonal design with the example of a 4-by-4 matrix. In the proposed scheme with the aid of beamforming, we divide the received signals into two groups according to the encoded matrix. By this way, we can eliminate the interference from the neighboring signals by more than half.

1-20hit(28hit)