1-12hit |
Mitsuyoshi KISHIHARA Kaito FUJITANI Akinobu YAMAGUCHI Yuichi UTSUMI Isao OHTA
We attempt to design and fabricate of a 4×4 Butler matrix for short-millimeter-wave frequencies by using the microfabrication process for a polytetrafluoroethylene (PTFE) substrate-integrated waveguide (SIW) by the synchrotron radiation (SR) direct etching of PTFE and the addition of a metal film by sputter deposition. First, the dimensions of the PTFE SIW using rectangular through-holes for G-band (140-220 GHz) operation are determined, and a cruciform 90 ° hybrid coupler and an intersection circuit are connected by the PTFE SIW to design the Butler matrix. Then, a trial fabrication is performed. Finally, the validity of the design result and the fabrication process is verified by measuring the radiation pattern.
Mitsuyoshi KISHIHARA Masaya TAKEUCHI Akinobu YAMAGUCHI Yuichi UTSUMI Isao OHTA
The microfabrication technique based on synchrotron radiation (SR) direct etching process has recently been applied to construct PTFE microstructures. This paper proposes a PTFE substrate integrated waveguide (PTFE SIW). It is expected that the PTFE SIW contributes to the improvement of the structural strength. A rectangular through-hole is introduced taking the advantage of the SR direct etching process. First, a PTFE SIW for the Q-band is designed. Then, a cruciform 3-dB directional coupler consisting of the PTFE SIW is designed and fabricated by the SR direct etching process. The validity of the PTFE SIW coupler is confirmed by measuring the frequency characteristics of the S-parameters. The mechanical strength of the PTFE SIW and the peeling strength of its Au film are also additionally investigated.
Mitsuyoshi KISHIHARA Masaya TAKEUCHI Akinobu YAMAGUCHI Yuichi UTSUMI Isao OHTA
The microfabrication technique based on SR (Synchrotron Radiation) direct etching process has recently been applied to construct PTFE microstructures. This paper attempts to fabricate an integrated PTFE-filled waveguide Butler matrix for short millimeter-wave by SR direct etching. First, a cruciform 3-dB directional coupler and an intersection circuit (0-dB coupler) are designed at 180 GHz. Then, a 4×4 Butler matrix with horn antennas is designed and fabricated. Finally, the measured radiation patterns of the Butler matrix are shown.
Yasuo OHTERA Haruka HIROSE Hirohito YAMADA
Performance suveyrance of CPML (Convolutional PML) for FDTD (Finite-Difference Time-Domain) method in cylindrical coordinate system was carried out. The CPML was placed perpendicularly to the radial axis and designed to absorb diverging or converging waves. To be able to analyze microstructured optical fibers and disk/ring resonators we introduced finite axial wavenumbers into the FDTD formulation. We investigated the dependence of reflectivity upon CPML's constituteve parameters such as $kappa$ and $sigma$ for various curvature radii and the axial wavenumbers. As a result of evaluation we found that the reflectivity gradually increased togather with the increase of the wavenumber. We also confirmed that the absorption performance was of the similar order for the converging waves and the diverging ones provided that their curvature radii were the same.
Vakhtang JANDIERI Kiyotoshi YASUMOTO Anurag SHARMA Hansa CHAUHAN
A rigorous semi-analytical approach for the scalar field in a microstructured optical fiber, which is formed of layered cylindrical arrays of circular rods symmetrically distributed on each concentric cylindrical layer, is presented. The method uses the T-matrix of a circular rod in isolation and the generalized reflection and transmission matrices of cylindrical arrays. Numerical examples of the mode index for three-layered hexagonal structure of circular air holes are demonstrated and compared with those obtained by a variational method.
Tetsuya ITO Shigeru SAWADA Yasuhiro HATTORI Yasushi SAITOH Terutaka TAMAI Kazuo IIDA
In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.
Takahiro HANDA Mitsuru OHTAKE Masaaki FUTAMOTO
Fe thin films were deposited directly and via Ag underlayer on glass and MgO(100) substrates by MBE. Polycrystal Fe films grew on the glass substrate while single crystal films grew on the MgO(100) substrate. Fe film growth followed the Volmer-Weber mode for both cases. The Fe film structure was influenced by the surface roughness of Ag underlayer at the early stage of film growth. The relationships between the Fe thin film morphology and the magnetic properties are discussed.
Masayuki HIROTA Maria-Cecilia VALECILLOS Manuel E. BRITO Kiyoshi HIRAO Motohiro TORIYAMA
Using various rare earth sesquioxides as additives, silicon nitride (Si3N4) samples were sintered at 1700 for 4 h by millimeter-wave heating performed in an applicator fed by a 28 GHz Gyrotron source under a nitrogen pressure of 0.1 MPa. A comparative study of densification, grain growth behavior and mechanical properties of silicon nitride fabricated by millimeter-wave and conventional sintering was carried out. Bulk densities were measured by Archimedes' technique. Except for the Eu2O3 containing sample, all samples were densified to relative densities of above 97.0%. Microstructure of the specimens was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). To investigate quantitatively the effect of millimeter-wave heating on grain growth, image analysis was carried out for grains in the specimens. Fracture toughness was determined by the indentation-fracture method (IF method) in accordance with Japan Industrial Standards (JIS). Fully dense millimeter-wave sintered silicon nitride presenting a bimodal microstructure exhibited higher values of fracture toughness than materials processed by conventional heating techniques. Results indicate that millimeter-wave sintering is more effective in enhancing the grain growth and in producing the bimodal microstructure than conventional heating. It was also confirmed that localized runaway in temperature, depending upon the sintering additives, can occur under millimeter-wave heating.
Hai SANG Gang NI ShuiYuan ZHANG YouWei DU SaiPeng WONG Ning KE WingYiu CHEUNG
A series of CoxAg1-x (0x100at.%) granular films were prepared using the ion-beam cosputtering technique at different substrate temperatures. Systematic investigations have been carried out on the giant magnetoresistance (GMR) effect and characterization of microstructures of these samples. The magnetoresistance ratio depends strongly on cobalt concentration, substrate temperature, and annealing treatment. The optimal value of GMR was observed in Co22Ag78 sample prepared at the temperature of 300 K. Microstructures of as-deposited and annealed samples were characterized by structural analyses. For Co22Ag78 sample, real-time in situ observation by TEM together with FMR spectra indicates that the size and shape of cobalt granules evolve primarily along the film plane during annealing. The results of FMR also provide that the cobalt granules remain single-domain particles after annealing at temperatures up to 700 K.
Oleg DJAZOVSKI Tomohisa MIKAMI Koutoku OHMI Shosaku TANAKA Hiroshi KOBAYASHI
Detailed investigations of the microstructural properties of SrGa2S4:Ce3+ thin films grown by deposition from binary vapors (DBV) were carried out by X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction measurements (EDX), electron probe microanalysis (EPMA), and X-ray photoelectron spectroscopy (XPS) depth profiling. The results indicate uniform distribution of the constituent elements in the nearly stoichiometric structure of the thin films. Photoluminescence (PL) data including absorption and luminescence spectra in the temperature range of 10 to 300 K and decay characteristics show that an increase in Ce concentration from 0.2 to 3 mol% is accompanied with a marked increase in both the intensity of activator absorption and decay time, while the emission and excitation bands remain fixed in position. A mechanism involving the concentration-dependent interactions between different centers in the lattice is proposed, which may explain the experimentally observed behavior.
Yuji UENISHI Hidenao TANAKA Hiroo UKITA
GaAs-based micromachining is a very attractive technique for integrating mechanical structures and active optical devices, such as laser diodes and photodiodes. For monolithically integrating mechanical parts onto laser diode wafers, the micromachining technique must be compatible with the laser diode fabrication process. Our micromachining technique features three major processes: epitaxitial growth (MOVPE) for both the structural and sacrificial layers, reactive dry-etching by chlorine for high-aspect, three-dimensional structures, and selective wet-etching by peroxide/ammonium hydroxide solution to release the moving parts. These processes are compatible with laser fabrication, so a cantilever beam structure can be fabricated at the same time as a laser diode structure. Furthermore, a single-crystal epitaxial layer has little residual stress, so precise microstructures can be obtained without significant deformation. We fabricated a microbeam resonator sensor composed of two laser diodes, a photodiode, and a micro-cantilever beam with an area of 400700 µm. The cantilever beam is 3 µm wide, 5 µm high, and either 110µm long for a 200-kHz resonant frequency or 50 µm long for a 1-MHz resonant frequency. The cantilever beam is excited by an intensity-modulated laser beam from an integrated excitation laser diode; the vibration signal is detected by a coupled cavity laser diode and a photodiode.
New focused ion beam (FIB) methods for microscopic cross-sectioning and observation, microscopic crosssectioning and elemental analysis, and aluminum film microstructure observation are presented. The new methods are compared to the conventional methods and the conventional FIB methods, from the four viewpoints such as easiness of analysis, analysis time, spatial resolution, and pinpointing precision. The new FIB methods, as a result, are shown to be the best ones totally judging from the viewpoints shown above.