The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kiyoshi NIKAWA(5hit)

1-5hit
  • Laser-SQUID Microscopy as a Novel Tool for Inspection, Monitoring and Analysis of LSI-Chip-Defects: Nondestructive and Non-electrical-contact Technique

    Kiyoshi NIKAWA  

     
    INVITED PAPER-Instruments and Coolers

      Vol:
    E85-C No:3
      Page(s):
    746-751

    We have developed and demonstrated a novel technique for electrical inspection and electrical failure analysis, which can detect open, high-resistance, and short circuits without the need for electrical contact with the outside of the LSI chip or the board on which the LSI chip is mounted. The basic idea of the technique is the detection of the magnetic field produced by OBIC (optical beam induced current) or photo current. A DC-SQUID (superconducting quantum interference device) magnetometer is used to detect the magnetic field. This scanning laser-SQUID microscopy ("laser-SQUID" for short) has a spatial resolution of about 1.3 µm. It can be used to distinguish defective chips before bonding pad patterning or after bonding without pin-selection. It can localize any defective site in the chip to within a few square microns.

  • Failure Analysis in Si Device Chips

    Kiyoshi NIKAWA  

     
    INVITED PAPER

      Vol:
    E77-C No:4
      Page(s):
    528-534

    Recent developments and case studies regarding VLSI device chip failure analysis are reviewed. The key failure analysis techniques reviewed include EMMS (emission microscopy), OBIC (optical beam induced current), LCM (liquid crystal method), EBP (electron beam probing), and FIB (focused ion beam method). Further, future possibilities in failure analysis, and some promising new tools are introduced.

  • Focused Ion Beam Applications to Failure Analysis of Si Device Chip

    Kiyoshi NIKAWA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    174-179

    New focused ion beam (FIB) methods for microscopic cross-sectioning and observation, microscopic crosssectioning and elemental analysis, and aluminum film microstructure observation are presented. The new methods are compared to the conventional methods and the conventional FIB methods, from the four viewpoints such as easiness of analysis, analysis time, spatial resolution, and pinpointing precision. The new FIB methods, as a result, are shown to be the best ones totally judging from the viewpoints shown above.

  • New Approach of Laser-SQUID Microscopy to LSI Failure Analysis Open Access

    Kiyoshi NIKAWA  Shouji INOUE  Tatsuoki NAGAISHI  Toru MATSUMOTO  Katsuyoshi MIURA  Koji NAKAMAE  

     
    INVITED PAPER

      Vol:
    E92-C No:3
      Page(s):
    327-333

    We have proposed and successfully demonstrated a two step method for localizing defects on an LSI chip. The first step is the same as a conventional laser-SQUID (L-SQUID) imaging where a SQUID and a laser beam are fixed during LSI chip scanning. The second step is a new L-SQUID imaging where a laser beam is stayed at the point, located in the first step results, during SQUID scanning. In the second step, a SQUID size (Aeff) and the distance between the SQUID and the LSI chip (ΔZ) are key factors limiting spatial resolution. In order to improve the spatial resolution, we have developed a micro-SQUID and the vacuum chamber housing both the micro-SQUID and the LSI chip. The Aeff of the micro-SQUID is a thousand of that of a conventional SQUID. The minimum value of ΔZ was successfully reduced to 25 µm by setting both the micro-SQUID and an LSI chip in the same vacuum chamber. The spatial resolution in the second step was shown to be 53 µm. Demonstration of actual complicated defects localization was succeeded, and this result suggests that the two step localization method is useful for LSI failure analysis.

  • Highly Sensitive OBIRCH System for Fault Localization and Defect Detection

    Kiyoshi NIKAWA  Shoji INOUE  

     
    PAPER-Beam Testing/Diagnosis

      Vol:
    E81-D No:7
      Page(s):
    743-748

    We have improved the optical beam induced resistance change (OBIRCH) system so as to detect (1) a current path as small as 10-50 µA from the rear side of a chip, (2) current paths in silicide lines as narrow as 0. 2 µm, (3) high-resistance Ti-depleted polysilicon regions in 0. 2 µm wide silicide lines, and (4) high-resistance amorphous thin layers as thin as a few nanometers at the bottoms of vias. All detections were possible even in observation areas as wide as 5 mm 5 mm. The physical causes of these detections were characterized by focused ion beam and transmission electron microscopy.