The search functionality is under construction.

Keyword Search Result

[Keyword] min-cut(6hit)

1-6hit
  • Leakage Power Aware Scheduling in High-Level Synthesis

    Nan WANG  Song CHEN  Cong HAO  Haoran ZHANG  Takeshi YOSHIMURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:4
      Page(s):
    940-951

    In this paper, we address the problem of scheduling operations into control steps with a dual threshold voltage (dual-Vth) technique, under timing and resource constraints. We present a two-stage algorithm for leakage power optimization. In the threshold voltage (Vth) assignment stage, the proposed algorithm first initializes all the operations to high-Vth, and then it iteratively shortens the critical path delay by reassigning the set of operations covering all the critical paths to low-Vth until the timing constraint is met. In the scheduling stage, a modified force-directed scheduling is implemented to schedule operations and to adjust threshold voltage assignments with a consideration of the resource constraints. To eliminate the potential resource constraint violations, the operations' threshold voltage adjustment problem is formulated as a “weighted interval scheduling” problem. The experimental results show that our proposed method performs better in both running time and leakage power reduction compared with MWIS [3].

  • Novel Voltage Choice and Min-Cut Based Assignment for Dual-VDD System

    Haiqi WANG  Sheqin DONG  Tao LIN  Song CHEN  Satoshi GOTO  

     
    PAPER-Physical Level Design

      Vol:
    E95-A No:12
      Page(s):
    2208-2219

    Dual-vdd has been proposed to optimize the power of circuits without violating the performance. In this paper, different from traditional methods which focus on making full use of slacks of non-critical gates, an efficient min-cut based voltage assignment algorithm concentrating on critical gates is proposed. And then this algorithm is integrated into a searching engine to auto-select rational voltages for dual-vdd system. Experimental results show that our search engine can always achieve good pair of dual-vdd, and our min-cut based algorithm outperformed previous works for voltage assignment both on power consumption and runtime.

  • An Improvement of Network-Flow Based Multi-Way Circuit Partitioning Algorithm

    Kengo R. AZEGAMI  Masato INAGI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E85-A No:3
      Page(s):
    655-663

    In this paper, we propose an improved network-flow based multi-way circuit partitioning algorithm whose objective is to minimize the number of sub-circuits. It iteratively extracts a size-maximal feasible sub-circuit one at a time. In our approach, two devices are applied. One is in the use of an exact min-cut graph, and the other is in the idea of keeping the number of I/O pins of the residual circuit as small as possible after one-time extraction. We implemented our algorithm in C for experiments, and tested it with several industrial cases and MCNC benchmarks. Compared to the known approach, we observed more than 10% reduction in average of the sub-circuit number.

  • A Routability Driven Technology Mapping Algorithm for LUT Based FPGA Designs

    Chi-Chou KAO  Yen-Tai LAI  

     
    PAPER-FPGA Systhesis

      Vol:
    E84-A No:11
      Page(s):
    2690-2696

    This paper presents a CAD technology mapping algorithm for LUT-based FPGAs. Since interconnections in an FPGA must be accomplished with limited routing resources, routability is the most important objective in a technology mapping algorithm. To optimize routability, the goal of the algorithm is the production of a design with a minimum interconnection. The Min-cut algorithm is first used to partition a graph representing a Boolean network into clusters so that the total number of interconnections between clusters is minimum. To decrease further the number of interconnections needed, clusters are then merged into larger clusters by a pairing technique. This algorithm has been tested on the MCNC benchmark circuits. Compared with other LUT-based FPGA mapping algorithms, the algorithm produces better routability characteristics.

  • An Efficient Algorithm to Extract an Optimal Sub-Circuit by the Minimum Cut

    Kengo R. AZEGAMI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E84-A No:5
      Page(s):
    1301-1308

    We improve the algorithm to obtain the min-cut graph of a hyper-graph and show an application to the sub-network extraction problem. The min-cut graph is a directed acyclic graph whose directed cuts correspond one-to-one to the min-cuts of the hyper-graph. While the known approach trades the exactness of the min-cut graph for some speed improvement, our proposed algorithm gives an exact one without substantial computation overhead. By using the exact min-cut graph, an exhaustive algorithm finds an optimal sub-circuit that is extracted by a min-cut from the circuit. By experiments with the industrial data, the proposing method showed a performance enough for practical use.

  • A Method for Obtaining the Maximum δ-Reliable Flow in a Network

    Wataru KISHIMOTO  Masashi TAKEUCHI  

     
    PAPER

      Vol:
    E81-A No:5
      Page(s):
    776-783

    In communication networks there is a growing need for ensuring that networks maintain service despite failures. To meet the need, the concept of δ-reliable channel is introduced; it is a set of communication channels along a set of paths. The δ-reliable channel meets the requirement that if a link or node fails, failure is limited to a maximum of δ f (f total capacity of the channels, and 0<δ 1). The max-flow min-cut theorem of δ-reliable flow has been proved for the single-commodity case. In this paper we give a method for evaluating the maximum δ-reliable flow between a specified pair of vertices for single commodity case. The method consists of a maximum of 1/δ iterations of calculations of the maximum flow value.