The search functionality is under construction.

Keyword Search Result

[Keyword] multi-code CDMA(9hit)

1-9hit
  • A Multi-Code Biorthogonal Code Keying with Constant Amplitude Coding

    Myoung Jin KIM  Sung Pil KIM  Jin-Woong CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:7
      Page(s):
    2928-2936

    Orthogonal modulation provides low probability of bit error, however its bandwidth efficiency is very low. Biorthogonal code may double the bandwidth efficiency, but its required bandwidth grows exponentially with the number of input bits as in orthogonal modulation. In this paper, we propose a multi-code biorthogonal code keying (MBCK) scheme that significantly reduces the signal bandwidth with the benefit from orthogonal waveform coding maintained. The system consists of multiple waveform coding blocks, and the sum of output codewords is transmitted. A problem with MBCK is that output signal is multi-level, which requires amplifier with high linearity. So it may not be an appropriate scheme for portable unit where power efficiency is highly important. We also propose a modified MBCK scheme that guarantees constant amplitude output. The transmitter of the proposed scheme contains a redundant waveform coder whose input is generated by encoding the information bits. Adding the codewords from all constituent waveform coding blocks, the composite signal has constant amplitude. It is also shown that the redundant bits are not only used to make constant amplitude signal but also used to improve the BER performance at the receiver.

  • RAKE-SOVA Equalization for Multi-Code CDMA System with Low Spreading Factor

    Junhui ZHAO  Dongming WANG  Xiaohu YOU  Yun Hee KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2087-2092

    In CDMA system, the RAKE receiver is commonly used to attain diversity gain by taking advantage of the good correlation properties of the spreading codes. However, at low spreading gains the good correlation properties of the spreading codes are lost and the RAKE receiver performance is severely degraded by intersymbol interference (ISI) due to the interpath interference (IPI). In case of multi-code CDMA system, there are exist multi-code interference (MCI). In order to suppress ISI and MCI, a novel receiver based on soft-output viterbi algorithm (SOVA) equalization is proposed in this paper. The SOVA equalization is applied to symbol sequences after RAKE combining and MCI cancellation to effectively eliminate the ISI during transmission of high rate data in wideband DS-CDMA systems. Simulation results show that the proposed RAKE-SOVA receiver significantly outperform the traditional RAKE and RAKE-VA receivers.

  • Linear Prediction Based Channel Estimation Using Pilot and Traffic Channels in Multi-Code CDMA Systems

    Jung Suk JOO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:12
      Page(s):
    3551-3558

    For the channel estimation in the pilot channel aided CDMA systems which can support a multi-code scheme, we consider a linear prediction using both pilot and traffic channels. After deriving a new form of the optimal Wiener filter which requires less computational load, for its practical implementation, we propose the decision-directed adaptive linear prediction filter (DD-ALPF). To prevent from falling into the false lock, the proposed DD-ALPF uses the conventional channel estimate obtained only from pilot channel as a baseline for checking the reliability of the filter output. It will be shown through computer simulation that the proposed method can improve the receiver performance and performs better in the fast fading environments, compared with the existing ones.

  • Performance Analysis of Multi Phased MC-CDMA System in Cooperating with Clipping

    Cheol Yong AHN  Dong Ku KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:11
      Page(s):
    3326-3330

    Multi-Code CDMA (MC-CDMA) can not only be integrated easily with a conventional CDMA system, but also achieve good spectral efficiency and high processing gain. MC-CDMA requires a linear amplifier due to the increasing value of its peak-to-average power ratio (PAPR) as the number of codes increases. As such, a multi-phased MC-CDMA (MP-CDMA) system is proposed to provide a variable rate service that is not susceptible to the nonlinear characteristics of an amplifier. A clipping technique is used between the output of a multi-code modulator and the input of an MPSK modulator to improve the performance of the MPSK chip demodulator and reduce the system's complexity. System performance is analyzed and compared with the number of codes and clipping levels. The optimum clipping level is also evaluated for the number of codes on both AWGN and flat fading channels.

  • Iterative Demodulation and Decoding for Parallel Combinatorial SS Systems

    Ken-ichi TAKIZAWA  Shigenobu SASAKI  Shogo MURAMATSU  Hisakazu KIKUCHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    2991-2999

    This paper proposes iterative demodulation/decoding for parallel combinatorial spread spectrum (PC/SS) systems. A PC/SS system conveys information data by a combination of pre-assigned orthogonal spreading sequences with polarity. In this paper, convolutional coding with a uniform random interleaver is implemented in channel coding, just like as a serial concatenated coding. A 'soft-in/soft-out' PC/SS demodulator based on a posteriori probability algorithm is proposed to perform the iterative demodulation and decoding. Simulation results demonstrate that the proposed iterative demodulation/decoding scheme bring significant improvement in bit error rate performance. This proposed decoding scheme achieves high-speed transmission by two approaches. One is a puncturing operation, and the other is to increase the number of transmitting sequences. In the latter approach, lower error rate performance is achieved comparing with that the punctured convolutional code is used to increase the information bit rate.

  • An Access Control Protocol for a Heterogeneous Traffic with a Multi-Code CDMA Scheme

    Abbas SANDOUK  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2085-2092

    In this paper, we discuss the access control in multimedia CDMA ALOHA protocol. We introduce a new algorithm for the access control based on Modified Channel Load Sensing Protocol (MCLSP) in an integrated voice and two different classes of data users, high bit rate and low bit rate, exist in a multi-code CDMA Slotted ALOHA system. With our new algorithm, we show that the throughput of high bit rate data users, as well as, the total throughput of the data medium can be optimized and take a maximum value even at high values of offered loads. We also investigate the performance when voice activity detection (VAD) is considered in voice transmission.

  • An Integrated Voice/Data CDMA Packet Communications with Multi-Code CDMA Scheme

    Abbas SANDOUK  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER-Communication Systems

      Vol:
    E82-A No:10
      Page(s):
    2105-2114

    In this paper, we consider an integrated voice and data system over CDMA Slotted-ALOHA (CDMA S-ALOHA). We investigate its performance when multi-code CDMA (MC-CDMA) is applied as a multi-rate scheme to support users which require transmission with different bit rates. Two different classes of data users are transmitted together with voice. Performance measurement is obtained in respect of throughput for data and outage probability for voice. Moreover, we consider the Modified Channel Load Sensing Protocol (MCLSP) as a traffic control to improve the throughput of data. As a result, we show that the MC-CDMA technique is an effective one to obtain good throughput for data users at an acceptable voice outage probability. Furthermore, we show that with MCLSP, the throughput of data can be improved to reach a constant value even at a high offered load of data users.

  • Error Correcting Capability of Constant Amplitude Coding for Orthogonal Multi-Code CDMA Systems

    Tadahiro WADA  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    LETTER-Coding Theory

      Vol:
    E81-A No:10
      Page(s):
    2166-2169

    In this paper, we discuss the error correcting capability of the constant amplitude coding. In orthogonal multi-code CDMA systems, the transmitted signal has large amplitude fluctuation and the amplitude fluctuation causes large nonlinear distortion. In order to avoid the amplitude fluctuation, we have proposed "constant amplitude coding" in our previous study. The constant amplitude coding can achieve constant amplitude transmission by utilizing the redundancy of the coding, i. e. , the coding can have an error correcting effect. In this paper, we examine the effectiveness of the error correcting capability of the constant amplitude coding and show that the constant amplitude coding is very effective against nonlinear distortion under the consideration of the error correcting capability.

  • A Constant Amplitude Coding for Orthogonal Multi-Code CDMA Systems

    Tadahiro WADA  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2477-2484

    In this paper, we present orthogonal multi-code CDMA systems with the constant amplitude transmission. In general, the dynamic range of the amplitude of the transmitting signal is very large in the case of orthogonal multi-code CDMA systems. In order to realize the constant amplitude transmission for orthogonal multi-code CDMA systems, we propose a constant amplitude coding. First, we show the basic concept of the constant amplitude coding. And then, we show that the constant amplitude transmission can be realized by the combination of the conventional orthogonal multi-code CDMA and the constant amplitude coding. Finally, the effectiveness of the proposed method is evaluated in terms of the bit error rate performance and it is shown that the proposed method is robust to the non-linear distortion caused by a high power amplifier (HPA).