Nihad A. A. ELHAG Liang LIU Ping WEI Hongshu LIAO Lin GAO
The concept of dual function radar-communication (DFRC) provides solution to the problem of spectrum scarcity. This paper examines a multiple-input multiple-output (MIMO) DFRC system with the assistance of a reconfigurable intelligent surface (RIS). The system is capable of sensing multiple spatial directions while serving multiple users via orthogonal frequency division multiplexing (OFDM). The objective of this study is to design the radiated waveforms and receive filters utilized by both the radar and users. The mutual information (MI) is used as an objective function, on average transmit power, for multiple targets while adhering to constraints on power leakage in specific directions and maintaining each user’s error rate. To address this problem, we propose an optimal solution based on a computational genetic algorithm (GA) using bisection method. The performance of the solution is demonstrated by numerical examples and it is shown that, our proposed algorithm can achieve optimum MI and the use of RIS with the MIMO DFRC system improving the system performance.
Rui JIANG Xiao ZHOU You Yun XU Li ZHANG
Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.
This paper proposes a low-complexity variational Bayesian inference (VBI)-based method for massive multiple-input multiple-output (MIMO) downlink channel estimation. The temporal correlation at the mobile user side is jointly exploited to enhance the channel estimation performance. The key to the success of the proposed method is the column-independent factorization imposed in the VBI framework. Since we separate the Bayesian inference for each column vector of signal-of-interest, the computational complexity of the proposed method is significantly reduced. Moreover, the temporal correlation is automatically uncoupled to facilitate the updating rule derivation for the temporal correlation itself. Simulation results illustrate the substantial performance improvement achieved by the proposed method.
Expectation propagation (EP) is a powerful algorithm for signal recovery in compressed sensing. This letter proposes correction of a variance message before denoising to improve the performance of EP in the high signal-to-noise ratio (SNR) regime for finite-sized systems. The variance massage is replaced by an observation-dependent consistent estimator of the mean-square error in estimation before denoising. Massive multiple-input multiple-output (MIMO) is considered to verify the effectiveness of the proposed correction. Numerical simulations show that the proposed variance correction improves the high SNR performance of EP for massive MIMO with a few hundred transmit and receive antennas.
Tatsuya SUGIYAMA Keigo TAKEUCHI
Sparse orthogonal matrices are proposed to improve the convergence property of expectation propagation (EP) for sparse signal recovery from compressed linear measurements subject to known dense and ill-conditioned multiplicative noise. As a typical problem, this letter addresses generalized spatial modulation (GSM) in over-loaded and spatially correlated multiple-input multiple-output (MIMO) systems. The proposed sparse orthogonal matrices are used in precoding and constructed efficiently via a generalization of the fast Walsh-Hadamard transform. Numerical simulations show that the proposed sparse orthogonal precoding improves the convergence property of EP in over-loaded GSM MIMO systems with known spatially correlated channel matrices.
Ryotaro OHASHI Takashi TOMURA Jiro HIROKAWA
This paper presents the excitation coefficient optimization of slot array antennas for increasing channel capacity in 2×2-mode two-dimensional ROM (rectangular coordinate orthogonal) transmission. Because the ROM transmission is for non-far region communication, the transmission between Tx (transmission) and Rx (reception) antennas increases when the antennas radiate beams inwardly. At first, we design the excitation coefficients of the slot arrays in order to enhance the transmission rate for a given transmission distance. Then, we fabricate monopulse corporate-feed waveguide slot array antennas that have the designed excitation amplitude and phase in the 60-GHz band for the 2×2-mode two-dimensional ROM transmission. The measured transmission between the fabricated Tx and Rx antennas increases at the given propagation distance and agrees with the simulation.
In this paper, we study the achievable degrees of freedom (DoF) of a multiple-input multiple-output (MIMO) multi-way relay channel with asymmetric message set that models the scenario of the two-way communication between a base station and multiple users through a relay. Under the assumption of delayed channel state information at transmitters (CSIT), we propose an amplify-and-forward relaying scheme based on the scheme proposed by Maddah-Ali and Tse to support signal space alignment, so that the available dimensions of the signal spaces at the relay and the users can be efficiently utilized. The proposed scheme outperforms the traditional one-way scheme from the perspective of DoF, and is useful to relieve the communication bottleneck caused by the asymmetric traffic load inherent in cellular networks.
Faster-than-Nyquist (FTN) signaling is investigated for quasi-static flat fading massive multiple-input multiple-output (MIMO) systems. In FTN signaling, pulse trains are sent at a symbol rate higher than the Nyquist rate to increase the transmission rate. As a result, inter-symbol interference occurs inevitably for flat fading channels. This paper assesses the information-theoretically achievable rate of MIMO FTN signaling based on the optimum joint equalization and multiuser detection. The replica method developed in statistical physics is used to evaluate the achievable rate in the large-system limit, where the dimensions of input and output signals tend to infinity at the same rate. An analytical expression of the achievable rate is derived for general modulation schemes in the large-system limit. It is shown that FTN signaling does not improve the channel capacity of massive MIMO systems, and that FTN signaling with quadrature phase-shift keying achieves the channel capacity for all signal-to-noise ratios as the symbol period tends to zero.
In this letter, we propose a lattice reduction (LR) aided joint precoding design for MIMO-relay broadcast communication with the average bit error rate (BER) criterion. We jointly design the signal process flow at both the base station (BS), and the relay station (RS), using the reduced basis of two-stage channel matrices. We further modify the basic precoding design with a novel shift method and a modulo method to improve the power efficiency at the BS and the RS respectively. In addition, the MMSE-SIC algorithm is employed to improve the performance of precoding. Simulations show that, the proposed schemes achieve higher diversity order than the traditional precoding without LR, and the modified schemes significantly outperform the basic design, proving the effectiveness of the proposed methods.
Yoshihito DOI Yukitoshi SANADA
This paper presents a codeword metric calculation scheme for two step joint decoding of block coded signals in overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. A two step joint decoding scheme has been proposed for the complexity reduction as compared to joint maximum likelihood decoding in overloaded MIMO systems. Outer codes are widely used in wireless LANs such as IEEE802.11n. However, the two step joint decoding has not been combined with an outer code. In the first step of the two step joint decoding candidate codewords for metric calculation in the second step are selected. The selection of the candidate codewords in the inner block code may not always be able to provide the metric of a binary coded symbol for the outer code. Moreover, a bit flipping based codeword selection scheme in the two step joint decoding may not always provide the second best candidate codeword. Thus, in the proposed scheme the metric of the binary coded symbol calculated in the first step is reused in the second step of two step joint decoding. It is shown that the two step joint decoding with the proposed metric calculation scheme achieves better performance than that of the joint decoding with the bit flipping based codeword calculation scheme and reduces the complexity by about 0.013 for 4 signal streams with the cost of bit error rate degradation within 0.5dB.
Hayato FUKUZONO Tomoki MURAKAMI Riichi KUDO Yasushi TAKATORI Masato MIZOGUCHI
Implicit feedback is an approach that utilizes uplink channel state information (CSI) for downlink transmit beamforming on multiple-input multiple-output (MIMO) systems, relying on over-the-air channel reciprocity. The implicit feedback improves throughput efficiency because overhead of CSI feedback for change of over-the-air channel responses is omitted. However, it is necessary for the implicit feedback to calibrate circuitry responses that uplink CSI includes, because actual downlink and uplink channel responses do not match due to different transmit and receive circuitry chains. This paper presents our proposed calibration scheme, weighted-combining calibration (WCC); it offers improved calibration accuracy. In WCC, an access point (AP) calculates multiple calibration coefficients from ratios of downlink and uplink CSI, and then combines coefficients with minimum mean square error (MMSE) weights. The weights are derived using a linear approximation in the high signal to noise power ratio (SNR) regime. Analytical mean square error (MSE) of calibration coefficients with WCC and calibration schemes for comparison is expressed based on the linear approximation. Computer simulations show that the analytical MSE matches simulated one if the linear approximation holds, and that WCC improves the MSE and signal to interference plus noise power ratio (SINR). Indoor experiments are performed on a multiuser MIMO system with implicit feedback based on orthogonal frequency division multiplexing (OFDM), built using measurement hardware. Experimental results verify that the channel reciprocity can be exploited on the developed multiuser MIMO-OFDM system and that WCC is also effective in indoor environments.
A coherent combining-based initial ranging scheme is proposed for multiple-input multiple-output and orthogonal frequency division multiple access systems. The proposed algorithm utilizes the correlation properties of the ranging codes to resolve the multipath components, coherently combines the initial ranging signal of resolved path on each receiving antenna to maximize the output signal-to-interference-and-noise ratio, and then collects the power of the multipath signals to detect the states of the ranging codes. Simulation results show that the proposed scheme has much better performance than the available noncoherent combining method, and can accommodate more active ranging users simultaneously in each cell.
Jaeyoung LEE Hyundong SHIN Jun HEO
In this paper, we consider decouple-and-forward (DCF) relaying, where the relay encodes and amplifies decoupled data using orthogonal space-time block codes (OSTBCs), to achieve the maximum diversity gain of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying. Since the channel status of all antennas is generally unknown and time-varying for cooperation in multi-antenna multiple-relay systems, we investigate an opportunistic relaying scheme for DCF relaying to harness distributed antennas and minimize the cooperation overheads by not using the global channel state information (CSI). In addition, for realistic wireless channels which have spatial fading correlation due to closely-spaced antenna configurations and poor scattering environments, we analyze the exact and lower bound on the symbol error probability (SEP) of the opportunistic DCF relaying over spatially correlated MIMO Rayleigh fading channels. Numerical results show that, even in the presence of spatial fading correlation, the proposed opportunistic relaying scheme is efficient and achieves additional performance gain with low overhead.
Ann-Chen CHANG Chih-Chang SHEN Kai-Shiang CHANG
In this letter, the orthogonal projection (OP) estimation of the direction of arrival (DOA) and direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output radars is addressed. First, a two-dimensional direction finding estimator based on OP technique with automatic pairing is developed. Second, this letter also presents a modified reduced-dimension estimator by utilizing the characteristic of Kronecker product, which only performs two one-dimensional angle estimates. Furthermore, the DOA and DOD pairing is given automatically. Finally, simulation results are presented to verify the efficiency of the proposed estimators.
Yoshihito DOI Mamiko INAMORI Yukitoshi SANADA
This paper presents a low complexity joint decoding scheme of block coded signals in an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. In previous literature, a joint maximum likelihood decoding scheme of block coded signals has been evaluated through theoretical analysis. The diversity gain with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of the joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes a two step joint decoding scheme for block coded signals. The first step of the proposed scheme calculates metrics to reduce the number of the candidate codewords using decoding based on joint maximum likelihood symbol detection. The second step of the proposed scheme carries out joint decoding on the reduced candidate codewords. It is shown that the proposed scheme reduces the complexity by about 1/174 for 4 signal stream transmission.
In this paper, we study the impact of opportunistic user scheduling on the outage probability of cognitive radio (CR) multiple-input multiple-output (MIMO) systems in the high power region where the peak transmit power constraint is higher than the peak interference constraint. The primary contributions of this paper are the derivation of exact closed-form expressions of the proposed scheduled CR-MIMO systems for outage probability and asymptotic analysis to quantify the diversity order and signal to noise ratio (SNR) gain. Through exact analytical results, we provide the achievable outage probability of the proposed scheduled systems as a function of SNR. Also, through asymptotic analysis, we show that the scheduled CR-MIMO systems provide some diversity order gain over the non-scheduled CR-MIMO systems which comes from multi-user diversity (MUD). Also, the SNR gain of the proposed scheduled systems is identical to that of the non-scheduled CR-MIMO systems.
We theoretically study the performance of multiple-input multiple-output (MIMO) free-space optical (FSO) systems using subcarrier quadrature modulation (SC-QAM) signaling. The system average symbol-error rate (ASER) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel, which is modeled by log-normal and the gamma-gamma distributions for weak and moderate-to-strong turbulence conditions. We quantitatively discuss the influence of index of refraction structure parameter, link distance, and different MIMO configurations on the system ASER. We also analytically derive and discuss the MIMO/FSO average (ergodic) channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE), under the impact of various channel conditions. Monte Carlo simulations are also performed to validate the mathematical analysis, and a good agreement between numerical and simulation results is confirmed.
In this letter, we propose a non-cooperative limited feedback precoding and subchannel selection scheme for non-reciprocal multiple-input multiple-output (MIMO) interference channels. At each iteration of the proposed scheme, each user updates its precoder selection for each subchannel and then chooses the predetermined number of subchannels in a distributed and non-cooperative way. We present simulation results to verify the performance of the proposed scheme.
Xiaodong SUN Shihua ZHU Zhenjie FENG Hui HUI
In this letter, we derive a lower bound on the diversity multiplexing tradeoff (DMT) in multiple-input multiple-output (MIMO) nonorthogonal amplify-and-forward (NAF) cooperative channels with resolution-constrained channel state feedback. It is shown that power control based on the feedback improves the DMT performance significantly in contrast to the no-feedback case. For instance, the maximum diversity increase is exponential in K with K-level feedback.
In this letter we propose a practical sensing-based opportunistic spectrum sharing scheme for cognitive radio (CR) downlink MIMO systems. Multi-antennas are exploited at the secondary transmitter to opportunistically access the primary spectrum and effectively achieve a balance between secondary throughput maximization and mitigation of interference probably caused to primary radio link. We first introduce a brief secondary frame structure, in which a sensing phase is exploited to estimate the effective interference channel. According to the sensing result and taking the interference caused by the primary link into account, we propose an enhanced signal-to-leakage-and-noise ratio (SLNR)-based precoding scheme for the secondary transmitter. Compared to conventional schemes where perfect knowledge of the channels over which the CR transmitter interferes with the primary receiver (PR) is assumed, our proposed scheme shows its superiority and simulation results validate this.