1-10hit |
Nurul Ashikin Binti DAUD Yuta OOKA Tomohisa TABATA Tomohiro TETSUMOTO Takasumi TANABE
We present the first demonstration of an electro-optic modulator based on a photolithographically fabricated photonic crystal (PhC) nanocavity with a p-i-n junction with SiO2 cladding. We show that the device exhibits an ultrahigh quality factor (Q∼105) and allow us to demonstrate electro-optic modulation through the integrated p-i-n diode structure. We demonstrate an electro-optic modulation based on the carrier injection.
Naoya TATE Tadashi KAWAZOE Shunsuke NAKASHIMA Wataru NOMURA Motoichi OHTSU
In order to realize high-yield speckle modulation, we developed a novel spatial light modulator using zinc oxide single crystal doped with nitrogen ions. The distribution of dopants was optimized to induce characteristic optical functions by applying an annealing method developed by us. The device is driven by a current in the in-plane direction, which induces magnetic fields. These fields strongly interact with the doped material, and the spatial distribution of the refractive index is correspondingly modulated via external control. Using this device, we experimentally demonstrated speckle modulation, and we discuss the quantitative superiority of our approach.
Recent progress in research on the finite element method (FEM) for optical waveguide design and analysis is reviewed, focusing on the author's works. After briefly reviewing fundamentals of FEM such as a theoretical framework, a conventional nodal element, a newly developed edge element to eliminate nonphysical, spurious solutions, and a perfectly matched layer to avoid undesirable reflections from computational window edges, various FEM techniques for a guided-mode analysis, a beam propagation analysis, and a waveguide discontinuity analysis are described. Some design examples are introduced, including current research activities on multi-core fibers.
Makoto NARUSE Masashi AONO Song-Ju KIM
Nature-inspired devices and architectures are attracting considerable attention for various purposes, including the development of novel computing techniques based on spatiotemporal dynamics, exploiting stochastic processes for computing, and reducing energy dissipation. This paper demonstrates that networks of optical energy transfers between quantum nanostructures mediated by optical near-field interactions occurring at scales far below the wavelength of light could be utilized for solving a constraint satisfaction problem (CSP), the satisfiability problem (SAT), and a decision making problem. The optical energy transfer from smaller quantum dots to larger ones, which is a quantum stochastic process, depends on the existence of resonant energy levels between the quantum dots or a state-filling effect occurring at the larger quantum dots. Such a spatiotemporal mechanism yields different evolutions of energy transfer patterns in multi-quantum-dot systems. We numerically demonstrate that networks of optical energy transfers can be used for solution searching and decision making. We consider that such an approach paves the way to a novel physical informatics in which both coherent and dissipative processes are exploited, with low energy consumption.
Junichi TAKAHARA Fuminori KUSUNOKI
Guiding and nanofocusing of a two-dimensional (2D) optical beam in a negative-dielectric-gap waveguide is studied theoretically. An index-guiding method along the dielectric core embedded in the negative-dielectric-gap is proposed and the confinement properties of the 2D optical beam are studied by the effective-refractive-index method and FDTD simulations. We have shown that the lateral beam width of the 2D optical beam can be shrunk to zero beyond the diffraction limit. A tapered negative-dielectric-gap waveguide using adiabatic propagation achieves nano-focusing and can be applied to nano-optical couplers. This is a gateway from conventional dielectric waveguides to nano-optical integrated circuits.
Makoto NARUSE Tetsuya MIYAZAKI Tadashi KAWAZOE Suguru SANGU Kiyoshi KOBAYASHI Fumito KUBOTA Motoichi OHTSU
We approach nanophotonic computing on the basis of optical near-field interactions between quantum dots. A table lookup, or matrix-vector multiplication, architecture is proposed. As fundamental functionality, a data summation mechanism and digital-to-analog conversion are experimentally demonstrated using CuCl quantum dots. Owing to the diffraction-limit-free nature of nanophotonics, these architectures can achieve ultrahigh density integration compared to conventional bulky optical systems, as well as low power dissipation.
Suguru SANGU Kiyoshi KOBAYASHI Motoichi OHTSU
In nanophotonic device operations, characteristic features on a nanometer scale, such as locally excited states, dependence on the excitation number, and spatial symmetry of a system, play an important role. Using these features, selective excitation energy transfer via an optical near field is shown for a quantum-dot system with discrete energy levels. This selectivity strongly depends on a dipole-inactive state of an exciton, which cannot be excited by the far-field light. Operation principles of logic gates, photon storage, and quantum information processing device, which are based on the selectivity, are proposed, and the temporal dynamics are investigated analytically and numerically by using quantum theory. Nanophotonic devices, which are constructed from quantum mechanical and classical dissipative systems, are expected to become one of a key technologies in future device architecture.
Francisco MESEGUER Hernan MIGUEZ
Colloidal crystallization is one of the most promising approaches to the fabrication of photonic crystals with periodicity at the submicron length scale. Several approaches have been explored to enhance the optical quality of these materials and, at the same time, to integrate these materials in substrates of interest in current technology. In this paper we review some of the most promising advances recently made in this direction, as well as some achievements towards the creation of new colloidal structures.
Satoshi KAWATA Satoru SHOJI Hong-Bo SUN
Lasers have been established as a unique nanoprocessing tool due to its intrinsic three-dimensional (3D) fabrication capability and the excellent compatibility to various functional materials. Here we report two methods that have been proved particularly promising for tailoring 3D photonic crystals (PhCs): pinpoint writing via two-photon photopolymerization and multibeam interferential patterning. In the two-photon fabrication, a finely quantified pixel writing scheme and a method of pre-compensation to the shrinkage induced by polymerization enable high-reproducibility and high-fidelity prototyping; well-defined diamond-lattice PhCs prove the arbitrary 3D processing capability of the two-photon technology. In the interference patterning method, we proposed and utilized a two-step exposure approach, which not only increases the number of achievable lattice types, but also expands the freedom in tuning lattice constant.
Marko LONAR Tomoyuki YOSHIE Koichi OKAMOTO Yueming QIU Jelena VUKOVI Axel SCHERER
We have designed, fabricated and characterized efficient optical resonators and low-threshold lasers based on planar photonic crystal concept. Lasers with InGaAsP quantum well active material emitting at 1550 nm were optically pumped, and room temperature lasing was observed at threshold powers below 220 µW. Porous high quality factor cavity that we have developed confines light in the air region and therefore our lasers are ideally suited for investigation of interaction between light and matter on a nanoscale level. We have demonstrated the operation of photonic crystal lasers in different ambient organic solutions, and we have showed that planar photonic crystal lasers can be used to perform spectroscopic tests on femtoliter volumes of analyte.