The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] nanophotonics(10hit)

1-10hit
  • Electro-Optic Modulator Based on Photolithography Fabricated p-i-n Integrated Photonic Crystal Nanocavity

    Nurul Ashikin Binti DAUD  Yuta OOKA  Tomohisa TABATA  Tomohiro TETSUMOTO  Takasumi TANABE  

     
    PAPER-Optoelectronics

      Vol:
    E100-C No:8
      Page(s):
    670-674

    We present the first demonstration of an electro-optic modulator based on a photolithographically fabricated photonic crystal (PhC) nanocavity with a p-i-n junction with SiO2 cladding. We show that the device exhibits an ultrahigh quality factor (Q∼105) and allow us to demonstrate electro-optic modulation through the integrated p-i-n diode structure. We demonstrate an electro-optic modulation based on the carrier injection.

  • Development of Zinc Oxide Spatial Light Modulator for High-Yield Speckle Modulation Open Access

    Naoya TATE  Tadashi KAWAZOE  Shunsuke NAKASHIMA  Wataru NOMURA  Motoichi OHTSU  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1264-1270

    In order to realize high-yield speckle modulation, we developed a novel spatial light modulator using zinc oxide single crystal doped with nitrogen ions. The distribution of dopants was optimized to induce characteristic optical functions by applying an annealing method developed by us. The device is driven by a current in the in-plane direction, which induces magnetic fields. These fields strongly interact with the doped material, and the spatial distribution of the refractive index is correspondingly modulated via external control. Using this device, we experimentally demonstrated speckle modulation, and we discuss the quantitative superiority of our approach.

  • Optical Waveguide Theory by the Finite Element Method Open Access

    Masanori KOSHIBA  

     
    INVITED PAPER

      Vol:
    E97-C No:7
      Page(s):
    625-635

    Recent progress in research on the finite element method (FEM) for optical waveguide design and analysis is reviewed, focusing on the author's works. After briefly reviewing fundamentals of FEM such as a theoretical framework, a conventional nodal element, a newly developed edge element to eliminate nonphysical, spurious solutions, and a perfectly matched layer to avoid undesirable reflections from computational window edges, various FEM techniques for a guided-mode analysis, a beam propagation analysis, and a waveguide discontinuity analysis are described. Some design examples are introduced, including current research activities on multi-core fibers.

  • Nanoscale Photonic Network for Solution Searching and Decision Making Problems Open Access

    Makoto NARUSE  Masashi AONO  Song-Ju KIM  

     
    INVITED PAPER

      Vol:
    E96-B No:11
      Page(s):
    2724-2732

    Nature-inspired devices and architectures are attracting considerable attention for various purposes, including the development of novel computing techniques based on spatiotemporal dynamics, exploiting stochastic processes for computing, and reducing energy dissipation. This paper demonstrates that networks of optical energy transfers between quantum nanostructures mediated by optical near-field interactions occurring at scales far below the wavelength of light could be utilized for solving a constraint satisfaction problem (CSP), the satisfiability problem (SAT), and a decision making problem. The optical energy transfer from smaller quantum dots to larger ones, which is a quantum stochastic process, depends on the existence of resonant energy levels between the quantum dots or a state-filling effect occurring at the larger quantum dots. Such a spatiotemporal mechanism yields different evolutions of energy transfer patterns in multi-quantum-dot systems. We numerically demonstrate that networks of optical energy transfers can be used for solution searching and decision making. We consider that such an approach paves the way to a novel physical informatics in which both coherent and dissipative processes are exploited, with low energy consumption.

  • Guiding and Nanofocusing of Two-Dimensional Optical Beam for Nanooptical Integrated Circuits

    Junichi TAKAHARA  Fuminori KUSUNOKI  

     
    INVITED PAPER

      Vol:
    E90-C No:1
      Page(s):
    87-94

    Guiding and nanofocusing of a two-dimensional (2D) optical beam in a negative-dielectric-gap waveguide is studied theoretically. An index-guiding method along the dielectric core embedded in the negative-dielectric-gap is proposed and the confinement properties of the 2D optical beam are studied by the effective-refractive-index method and FDTD simulations. We have shown that the lateral beam width of the 2D optical beam can be shrunk to zero beyond the diffraction limit. A tapered negative-dielectric-gap waveguide using adiabatic propagation achieves nano-focusing and can be applied to nano-optical couplers. This is a gateway from conventional dielectric waveguides to nano-optical integrated circuits.

  • Nanophotonic Computing Based on Optical Near-Field Interactions between Quantum Dots

    Makoto NARUSE  Tetsuya MIYAZAKI  Tadashi KAWAZOE  Suguru SANGU  Kiyoshi KOBAYASHI  Fumito KUBOTA  Motoichi OHTSU  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1817-1823

    We approach nanophotonic computing on the basis of optical near-field interactions between quantum dots. A table lookup, or matrix-vector multiplication, architecture is proposed. As fundamental functionality, a data summation mechanism and digital-to-analog conversion are experimentally demonstrated using CuCl quantum dots. Owing to the diffraction-limit-free nature of nanophotonics, these architectures can achieve ultrahigh density integration compared to conventional bulky optical systems, as well as low power dissipation.

  • Nanophotonic Devices and Fundamental Functional Operations

    Suguru SANGU  Kiyoshi KOBAYASHI  Motoichi OHTSU  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1824-1831

    In nanophotonic device operations, characteristic features on a nanometer scale, such as locally excited states, dependence on the excitation number, and spatial symmetry of a system, play an important role. Using these features, selective excitation energy transfer via an optical near field is shown for a quantum-dot system with discrete energy levels. This selectivity strongly depends on a dipole-inactive state of an exciton, which cannot be excited by the far-field light. Operation principles of logic gates, photon storage, and quantum information processing device, which are based on the selectivity, are proposed, and the temporal dynamics are investigated analytically and numerically by using quantum theory. Nanophotonic devices, which are constructed from quantum mechanical and classical dissipative systems, are expected to become one of a key technologies in future device architecture.

  • Processing Photonic Colloidal Crystals for Technological Applications

    Francisco MESEGUER  Hernan MIGUEZ  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    274-282

    Colloidal crystallization is one of the most promising approaches to the fabrication of photonic crystals with periodicity at the submicron length scale. Several approaches have been explored to enhance the optical quality of these materials and, at the same time, to integrate these materials in substrates of interest in current technology. In this paper we review some of the most promising advances recently made in this direction, as well as some achievements towards the creation of new colloidal structures.

  • Pinpoint Two-Photon Writing and Multi-Beam Interferential Patterning of Three-Dimensional Polymer Photonic Crystals

    Satoshi KAWATA  Satoru SHOJI  Hong-Bo SUN  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    378-385

    Lasers have been established as a unique nanoprocessing tool due to its intrinsic three-dimensional (3D) fabrication capability and the excellent compatibility to various functional materials. Here we report two methods that have been proved particularly promising for tailoring 3D photonic crystals (PhCs): pinpoint writing via two-photon photopolymerization and multibeam interferential patterning. In the two-photon fabrication, a finely quantified pixel writing scheme and a method of pre-compensation to the shrinkage induced by polymerization enable high-reproducibility and high-fidelity prototyping; well-defined diamond-lattice PhCs prove the arbitrary 3D processing capability of the two-photon technology. In the interference patterning method, we proposed and utilized a two-step exposure approach, which not only increases the number of achievable lattice types, but also expands the freedom in tuning lattice constant.

  • Planar Photonic Crystal Nanolasers (I): Porous Cavity Lasers

    Marko LONAR  Tomoyuki YOSHIE  Koichi OKAMOTO  Yueming QIU  Jelena VUKOVI  Axel SCHERER  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    291-299

    We have designed, fabricated and characterized efficient optical resonators and low-threshold lasers based on planar photonic crystal concept. Lasers with InGaAsP quantum well active material emitting at 1550 nm were optically pumped, and room temperature lasing was observed at threshold powers below 220 µW. Porous high quality factor cavity that we have developed confines light in the air region and therefore our lasers are ideally suited for investigation of interaction between light and matter on a nanoscale level. We have demonstrated the operation of photonic crystal lasers in different ambient organic solutions, and we have showed that planar photonic crystal lasers can be used to perform spectroscopic tests on femtoliter volumes of analyte.