1-12hit |
Yunjung LEE Pil Un KIM Jin Ho CHO Yongmin CHANG Myoung Nam KIM
In this paper, a single-channel adaptive noise canceller (SCANC) is proposed to enhance heart sounds during auscultation. Heart sounds provide important information about the condition of the heart, but other sounds interfere with heart sounds during auscultation. The adaptive noise canceller (ANC) is widely used to reduce noises from biomedical signals, but it is not suitable for enhancing auscultatory sounds acquired by a stethoscope. While the ANC needs two inputs, a stethoscope provides only one input. Other approaches, such as ECG gating and wavelet de-noising, are rather complex and difficult to implement as real-time systems. The proposed SCANC uses a single-channel input based on Heart Sound Inherency Indicator and reference generator. The architecture is simple, so it can be easily implemented in real-time systems. It was experimentally confirmed that the proposed SCANC is efficient for heart sound enhancement and is robust against the heart rate variations.
Yasumi NAKAMURA Makoto TAKAMIYA Takayasu SAKURAI
An on-chip power supply noise canceller with higher voltage supply and switching transistor is proposed and the effectiveness of the canceller is experimentally verified. The noise canceller is effective for nano-second order noise caused by circuit wakeup or step increase of frequency in frequency hopping. The principle of the noise canceller is to reduce the current flowing through the supply line of VDD by injecting additional current from the higher voltage supply, so that the voltage drop across the VDD supply line is reduced. As additional current flow from higher supply, switching transistor has to be turned off not to increase the power consumption. With turn-off time of 2L/R, this current can be turned off without inducting another droop due to the increase of current flowing through the power supply line. The measurement shows the canceller reduces 68% of the noise with load circuit equivalent to 530 k logic gates in 90-nm CMOS with 9% wire overhead, 1.5% area overhead, and 3% power overhead at 50 k wake-ups/s. Compared to passive noise reduction, proposed noise canceller reduces power supply noise by 64% without wire overhead and to achieve same noise reduction with passive method, 77 times more C or 45 times less L is required. Too large switching transistor results in saturated noise reduction effect and higher power consumption. A rule-of-thumb is to set the on-resistance to supply 100% of load current when turned-on.
Miki SATO Akihiko SUGIYAMA Shin'ichi OHNAKA
This paper proposes an adaptive noise canceller (ANC) with low signal-distortion for human-robot communication. The proposed ANC has two sets of adaptive filters for noise and crosstalk; namely, main filters (MFs) and subfilters (SFs) connected in parallel thereto. To reduce signal-distortion in the output, the stepsizes for coefficient adaptation in the MFs are controlled according to estimated signal-to-noise ratios (SNRs) of the input signals. This SNR estimation is carried out using SF output signals. The stepsizes in the SFs are determined based on the ratio of the primary and the reference input signals to cope with a wider range of SNRs. This ratio is used as a rough estimate of the input signal SNR at the primary input. Computer simulation results using TV sound and human voice recorded in a carpeted room show that the proposed ANC reduces both residual noise and signal-distortion by as much as 20 dB compared to the conventional ANC. Evaluation in speech recognition with this ANC reveals that with a realistic TV sound level, as good recognition rate as in the noise-free condition is achieved.
Chawalit BENJANGKAPRASERT Nobuaki TAKAHASHI Tsuyoshi TAKEBE
This paper proposes a new implementation of an adaptive noise canceller based upon a parallel block structure, which aims to raise the processing and convergence rates and to improve the steady-state performance. The procedure is as follows: First, an IIR bandpass filter with a variable center angular frequency using adaptive Q-factor control and two adaptive control signal generators are realized by the parallel block structure. Secondly, a new algorithm for adaptive Q-factor control with parallel block structure is proposed to improve the convergence characteristic. In addition, the steady-state performance of the filter is stabilized by using the variable step size parameter in adaptive control of the center frequency and the speed up of the convergence rate is achieved by adopting a normalized gradient algorithm for adaptive control. Finally, simulation results are given to demonstrate the convergence performance.
Akihiro HIRANO Kenji NAKAYAMA Shinya ARAI Masaki DEGUCHI
This paper proposes a low-distortion noise canceller and its learning algorithm which is robust against crosstalk and is applicable for continuous sounds. The proposed canceller consists of two stages: cancellation of the crosstalk and cancellation of the noise. A recursive filter reduces the number of computations for noise cancellation stage. Separate filters for the adaptation and the filtering are introduced for crosstalk cancellation. Computer simulations show 10 dB improvement of the error power.
Hai LIN Mohammad Reza ASHARIF Katsumi YAMASHITA
The purpose of this letter is to modify the correlation least mean squares algorithm using a sum of the lagged squared errors as the cost function and extend the modified CLMS algorithm to two-dimensional domain. The effectiveness of the proposed algorithm is shown by the computer simulation.
Shigeji IKEDA Akihiko SUGIYAMA
This paper proposes an adaptive noise canceller with low signal-distortion in the presence of crosstalk. The proposed noise canceller has two pairs of cross-coupled adaptive filters, each of which consists of the main filter and a sub filter. The signal-to-noise ratios (SNRs) of the primary and the reference signals are estimated by the sub filters. To reduce signal distortion at the output of the adaptive noise canceller, the step sizes for coefficient adaptation in the main filters are controlled according to the estimated SNRs. Computer simulation results show that the proposed noise canceller reduces signal distortion in the output signal by up to 15 dB compared to the conventional noise canceller.
Xiaohua WU Shang LI Nobuaki TAKAHASHI Tsuyoshi TAKEBE
In this paper, a block implementation of high-speed IIR adaptive noise canceller is proposed. First, the block difference equation of an IIR filter is derived by the difference equation for high-speed signal processing. It is shown that the computational complexity for updating the coefficients of IIR adaptive filter can be reduced by using the relations between the elements of coefficient matrices of block difference equation. Secondly, the block implementation of IIR adaptive noise canceller is proposed in which the convergence rate is increased by successively adjusting filter Q-factors. Finally, the usefulness of proposed block implementation is verified by the computer simulations.
Kiyoyasu MARUYAMA Chawalit BENJANGKAPRASERT Nobuaki TAKAHASHI Tsuyoshi TAKEBE
An adaptive algorithm for a single sinusoid detection using IIR bandpass filter with parallel block structure has been proposed by Nishimura et al. However, the algorithm has three problems: First, it has several input frequencies being impossible to converge. Secondly, the convergence rate can not be higher than that of the scalar structure. Finally, it has a large amount of computation. In this paper, a new algorithm is proposed to solve these problems. In addition, a new structure is proposed to reduce the amount of computation, in which the adaptive control signal generator is realized by the paralel block structure. Simulation results are given to illustrate the performance of the proposed algorithm.
Yapi ATSE Kenji NAKAYAMA Zhiqiang MA
Single-reference and multi-reference noise canceller (SRNC and MRNC) performances are investigated based on correlation between signal and noise. Exact relations between these noise canceller performances and signal-noise correlation have not been well discussed yet. In this paper, the above relations are investigated based on theoretical, analysis and computer simulation. The normalized LMS (NLMS) algorithm is employed. Uncorrelate, partially correlated, and correlated signal and noise combinations are taken into account. Computer simulation is carried out, using real speech, white noise, real noise sound, sine wave signals, and their combinations. In the SRNC problem, spectral analysis is applied to derive the canceller output power spectrum. From the simulation results, it is proven that the SRNC performance is inversely proportional to the signal-noise correlation as expected by the theoretical analysis. From the simulation results, the MRNC performance is more sensitive to the signal-noise correlation than that of SRNC. When the signal-noise correlation is high, by using a larger number of adaptive filter taps, the noise is reduced more, and, the signal distortion is increased. This means the signal components included in the noise are canceled exactly.
Zhiqiang MA Kenji NAKAYAMA Akihiko SUGIYAMA
An automatic tap assignment method in sub-band adaptive filter is proposed in this letter. The number of taps of the adaptive filter in each band is controlled by the mean-squared error. The numbers of taps increase in the bands which have large errors, while they decrease in the bands having small errors, until residual errors in all the bands become the same. In this way, the number of taps in a band is roughly proportional to the length of the impulse response of the unknown system in this band. The convergence rate and the residual error are improved, in comparison with existing uniform tap assignment. Effectiveness of the proposed method has been confirmed through computer simulation.
An acoustic echo canceller that also cancels room noise is proposed. This system has an additive (noise reference) input port, and a noise canceller (NC) precedes the echo canceller (EC) in a cascade configuration. The adaptation control problem for the cascaded echo and noise canceller is solved by controlling the adaptation process to match the occurrence of intermittent speech/echo; the room noise is a stationary signal. A simulation shows that adaptation using the NLMS algorithm is very effective for the echo and noise cancellation. Sub-band cancelling techniques are utilized. Noise cancellation is realized with a lower band EC. Hardware is implemented and its performance evaluated through experiments under a real acoustic field. The combination of the EC with NC maintains excellent performance at all echo to room noise power ratios. It is shown that the proposed canceller overcomes the disadvantages traditionally associated with ECs and NSc.