The search functionality is under construction.

Keyword Search Result

[Keyword] noise coupling(6hit)

1-6hit
  • A 6th-Order Quadrature Bandpass Delta Sigma AD Modulator Using Dynamic Amplifier and Noise Coupling SAR Quantizer

    Chunhui PAN  Hao SAN  

     
    PAPER

      Vol:
    E102-A No:3
      Page(s):
    507-517

    This paper presents a 6th-order quadrature bandpass delta sigma AD modulator (QBPDSM) with 2nd-order image rejection using dynamic amplifier and noise coupling (NC) SAR quantizer embedded by passive adder for the application of wireless communication system. A novel complex integrator using dynamic amplifier is proposed to improve the energy efficiency of the QBPDSM. The NC SAR quantizer can realize an additional 2nd-order noise shaping and 2nd-order image rejection by the digital domain noise coupling technique. As a result, the 6th-order QBPDSM with 2nd-order image rejection is realized by two complex integrators using dynamic amplifier and the NC SAR quantizer. The SPICE simulation results demonstrate the feasibility of the proposed QBPDSM in 90nm CMOS technology. Simulated SNDR of 76.30dB is realized while a sinusoid -3.25dBFS input is sampled at 33.3MS/s and the bandwidth of 2.083MHz (OSR=8) is achieved. The total power consumption in the modulator is 6.74mW while the supply voltage is 1.2V.

  • A Noise Coupled ΔΣAD Modulator Using Passive Adder Embedded Noise Shaping SAR Quantizer

    Chunhui PAN  Hao SAN  

     
    PAPER

      Vol:
    E101-C No:7
      Page(s):
    480-487

    This paper presents a 3rd-order ΔΣAD modulator with noise coupling structure using the proposed passive adder embedded quantization noise shaping (QNS) SAR quantizer. QNS SAR quantizer can feedback shaped quantization noise and realize an additional 1st-order noise shaping by noise coupling technique. As a result, the 3rd-order noise coupled ΔΣAD modulator is realized by two integrators with ring amplifier and the QNS SAR quantizer. The SPICE simulation results demonstrate the feasibility of the proposed ΔΣAD modulator in 90nm CMOS technology. Simulated SNDR of 81.05dB is achieved while a sinusoid -4.32dBFS input is sampled at 100MS/s and the bandwidth is BW=3.125MHz. The total power consumption in the modulator is 4.58mW while the supply voltage is 1.2V.

  • Investigation of Electromagnetic Noise Coupling in a Board with a Digital-RF Mixed IC by Measurement and Analysis

    Kenta TSUKAMOTO  Mizuki IWANAMI  Eiji HANKUI  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1182-1187

    In this paper the amplitude probability distribution (APD) measurement method is applied to evaluate noise coupling to an antenna on an evaluation board that uses mixed RF and digital signals of an IC. We analytically investigate noise coupling path to the antenna where the correlation coefficient matches the APD curve of the evaluation board. Moreover, in order to verify the analysis results, the noise coupling path in the board is evaluated by measurements involving In-phase/Quadrature (I/Q) signals as well as electromagnetic simulations. As a result, we demonstrate that APD method is effective in evaluating a degree of noise coupling from an IC to multiple antennas on the board, and confirm that the intensity of noise coupling to each antenna is affected greatly by the board layout patterns.

  • Study of Electromagnetic Noise Coupling in Wireless-LAN Communication System

    Mizuki IWANAMI  Hiroshi FUKUDA  Manabu KUSUMOTO  Takashi HARADA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1776-1780

    This paper shows experimental results of packet error rates (PERs) in wireless-LAN mounted printed circuit boards and gives a discussion on a mechanism of electromagnetic noise coupling that affects the PER. We utilized the amplitude probability distribution to investigate the noise coupling channel. We measured the magnetic near-field distribution to obtain information about noise sources. Based on measurement results, we also performed parallel plate resonance analysis to find out electromagnetic interference antennas. We confirmed that noise radiates from a power supply system of a digital circuit and its coupling to a receiving antenna causes an increase of the PER.

  • Cross-Noise-Coupled Architecture of Complex Bandpass ΔΣAD Modulator

    Hao SAN  Haruo KOBAYASHI  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    998-1003

    Complex bandpass ΔΣAD modulators can provide superior performance to a pair of real bandpass ΔΣAD modulators of the same order. They process just input I and Q signals, not image signals, and AD conversion can be realized with low power dissipation, so that they are desirable for such low-IF receiver applications. This paper proposes a new architecture for complex bandpass Δ ΣAD modulators with cross-noise-coupled topology, which effectively raises the order of the complex modulator and achieves higher SQNDR (Signal to Quantization Noise and Distortion Ratio) with low power dissipation. By providing the cross-coupled quantization noise injection to internal I and Q paths, noise coupling between two quantizers can be realized in complex form, which enhances the order of noise shaping in complex domain, and provides a higher-order NTF using a lower-order loop filter in the complex ΔΣAD modulator. Proposed higher-order modulator can be realized just by adding some passive capacitors and switches, the additional integrator circuit composed of an operational amplifier is not necessary, and the performance of the complex modulator can be effectively raised without more power dissipation. We have performed simulation with MATLAB to verify the effectiveness of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of higher-order enhancement, and improve SQNDR of the complex bandpass ΔΣAD modulator.

  • Approaches to Reducing Digital-Noise Coupling in CMOS Mixed-Signal LSIs

    Toshiro TSUKADA  Keiko Makie-FUKUDA  

     
    INVITED PAPER

      Vol:
    E80-A No:2
      Page(s):
    263-275

    Digital-switching noise coupled into sensitive analog circuits is a critical problem in large-scale integration of mixed analog and digital circuits. This paper describes noise coupling of this kind, especially, through the substrate in CMOS integrated circuits, and reviews recent technical solutions to this noise problem. Simplified models have been developed to simulate the substrate coupling rapidly and accurately. A method using a CMOS comparator was proposed for measuring the effects of substrate noise, and equivalent waveforms of actual substrate noise were obtained. A circuit tecnique, called active guard band filtering, that controls the noise source is a new approach to substrate noise decoupling. CAD methods for handling substrate-coupled switching noise are making design verification possible for practical mixed-signal LSIs.