The search functionality is under construction.

Keyword Search Result

[Keyword] optical path(30hit)

1-20hit(30hit)

  • Crosstalk-Aware Resource Allocation Based on Optical Path Adjacency and Crosstalk Budget for Space Division Multiplexing Elastic Optical Networks

    Kosuke KUBOTA  Yosuke TANIGAWA  Yusuke HIROTA  Hideki TODE  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    27-38

    To cope with the drastic increase in traffic, space division multiplexing elastic optical networks (SDM-EONs) have been investigated. In multicore fiber environments that realize SDM-EONs, crosstalk (XT) occurs between optical paths transmitted in the same frequency slots of adjacent cores, and the quality of the optical paths is degraded by the mutual influence of XT. To solve this problem, we propose a core and spectrum assignment method that introduces the concept of prohibited frequency slots to protect the degraded optical paths. First-fit-based spectrum resource allocation algorithms, including our previous study, have the problem that only some frequency slots are used at low loads, and XT occurs even though sufficient frequency slots are available. In this study, we propose a core and spectrum assignment method that introduces the concepts of “adjacency criterion” and “XT budget” to suppress XT at low and middle loads without worsening the path blocking rate at high loads. We demonstrate the effectiveness of the proposed method in terms of the path blocking rate using computer simulations.

  • Architecture and Design of Coarse/Fine Hybrid Granular Routing Optical Networks Open Access

    Yusaku ITO  Yojiro MORI  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    118-129

    A novel coarse and fine hybrid granular routing network architecture is proposed. Virtual direct links (VDLs) defined by the coarse granular routing to bridge distant node pairs, and routing via VDL mitigate the spectrum narrowing caused by optical filtering at wavelength-selective switches in ROADM (Reconfigurable Optical Add/Drop Multiplexing) nodes. The impairment mitigation yields denser channel accommodation in the frequency domain, which substantially increases fiber spectral efficiency. The proposed network simultaneously utilizes fine granular optical path level routing so that optical paths can be effectively accommodated in VDLs. The newly developed network design algorithm presented in this paper effectively implements routing and spectrum assignment to paths in addition to optimizing VDL establishment and path accommodation to VDLs. The effectiveness of the proposed architecture is demonstrated through both numerical and experimental evaluations; the number of fibers necessary in a network, and the spectrum bandwidth and hop count product are, respectively, reduced by up to 18% and increased by up to 111%.

  • Efficient Shared Protection Network Design Algorithm that Iterates Path Relocation with New Resource Utilization Metrics

    Masakazu SATO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E96-B No:4
      Page(s):
    956-966

    We propose an efficient network design algorithm that realizes shared protection. The algorithm iteratively improves the degree of wavelength resource usage and fiber utilization. To achieve this, we newly define two metrics to evaluate the degree of wavelength resource usage of a pair of working/backup paths and the fiber utilization efficiency. The proposed method iteratively redesigns groups of paths that are selected in the order determined by the metrics. A numerical analysis verifies that the proposed algorithm can substantially reduce the required wavelength resources and hence fiber cost. It is also verified that the computational complexity of the proposed algorithm is small enough to terminate within practicable time.

  • Impact of Elastic Optical Paths That Adopt Distance Adaptive Modulation to Create Efficient Networks

    Tatsumi TAKAGI  Hiroshi HASEGAWA  Ken-ichi SATO  Yoshiaki SONE  Akira HIRANO  Masahiko JINNO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:12
      Page(s):
    3793-3801

    We propose optical path routing and frequency slot assignment algorithms that can make the best use of elastic optical paths and the capabilities of distance adaptive modulation. Due to the computational difficulty of the assignment problem, we develop algorithms for 1+1 dedicated/1:1 shared protected ring networks and unprotected mesh networks to that fully utilize the characteristics of the topologies. Numerical experiments elucidate that the introduction of path elasticity and distance adaptive modulation significantly reduce the occupied bandwidth.

  • Optical Fast Circuit Switching Networks Employing Dynamic Waveband Tunnel

    Takahiro OGAWA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:10
      Page(s):
    3139-3148

    We propose a novel dynamic hierarchical optical path network architecture that achieves efficient optical fast circuit switching. In order to complete wavelength path setup/teardown efficiently, the proposed network adaptively manages waveband paths and bundles of optical paths, which provide virtual mesh connectivity between node pairs for wavelength paths. Numerical experiments show that operational and facility costs are significantly reduced by employing the adaptive virtual waveband connections.

  • Effects of Optical Layer Protection Granularity in Survivable Hierarchical Optical Path Network

    Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    LETTER-Network

      Vol:
    E95-B No:9
      Page(s):
    2959-2963

    This study compares the performances of waveband protection and wavelength path protection in survivable hierarchical optical path networks. Network costs and the number of switching operations necessary are evaluated for different ratios of protected demand. Numerical results demonstrate that waveband protection can drastically decrease the number of switching operations in the case of failure, while both waveband and wavelength path protection effectively reduce the network resources needed compared to single layer optical path networks.

  • Optical Node Architectures That Utilize Dedicated Add/Drop Switches to Realize Colorless, Directionless and Contentionless Capability

    Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:4
      Page(s):
    1307-1316

    This paper proposes optical node architectures for the single-layer optical cross-connect (OXC) and hierarchical OXC (HOXC) that utilize dedicated add/drop switches for originating/terminating traffic at a node. For both single-layer OXC and HOXC, three architectures with different restrictions on add/drop capabilities are presented. The performance of the proposed architectures is compared through numerical experiments. The architectures significantly reduce total switch scale and minimize necessary switch size while attaining colorless, directionless and contentionless capabilities.

  • Virtual Fiber Networking and Impact of Optical Path Grooming on Creating Efficient Layer One Services

    Fumisato NARUSE  Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E95-B No:3
      Page(s):
    723-729

    This paper presents a novel “virtual fiber” network service that exploits wavebands. This service provides virtual direct tunnels that directly convey wavelength paths to connect customer facilities. To improve the resource utilization efficiency of the service, a network design algorithm is developed that can allow intermediate path grooming at limited nodes and can determine the best node location. Numerical experiments demonstrate the effectiveness of the proposed service architecture.

  • Elastic Optical Path Network Architecture: Framework for Spectrally-Efficient and Scalable Future Optical Networks Open Access

    Masahiko JINNO  Hidehiko TAKARA  Yoshiaki SONE  Kazushige YONENAGA  Akira HIRANO  

     
    INVITED PAPER

      Vol:
    E95-B No:3
      Page(s):
    706-713

    This paper presents an elastic optical path network architecture as a novel networking framework to address the looming capacity crunch problem in internet protocol (IP) and optical networks. The basic idea is to introduce elasticity and adaptation into the optical domain to yield spectrally-efficient optical path accommodation, heightened network scalability through IP traffic offloading to the elastic optical layer, and enhanced survivability for serious disasters.

  • Dynamic Wavelength Allocation in Integrated Optical Path and Optical Packet Switch

    Dang-Quang BUI  Hiroaki HARAI  Won-Joo HWANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E94-B No:12
      Page(s):
    3412-3420

    Integration of optical paths and packets in a switch is a key technique to support ultra-high-speed traffic in the future Internet. However, the question of how to efficiently allocate wavelengths for optical paths and optical packets has not been solved yet due to the lack of a systematic model to evaluate the performance of the integrated switch. In this paper, we model the operation of the integrated switch as a system of two queuing models: M/M/x/x for optical paths and M/M/1/LPS for optical packets. From the model, we find an optimal policy to dynamically allocate wavelength resources in an integrated switch. Simulation results demonstrate that our mechanism achieves better performance than other methods.

  • Prospects and Challenges of Multi-Layer Optical Networks Open Access

    Ken-ichi SATO  Hiroshi HASEGAWA  

     
    SURVEY PAPER-Traffic Engineering and Multi-Layer Networking

      Vol:
    E90-B No:8
      Page(s):
    1890-1902

    This paper investigates the prospects and challenges of hierarchical optical path networks. The merits and issues of introducing higher order optical paths are elucidated. State of the art of the key enabling technologies are demonstrated including hierarchical optical cross-connect switch architectures, hierarchical optical path network design algorithms, a newly developed waveband filter, and waveband conversion technologies.

  • GMPLS Based Survivable Photonic Network Architecture

    Wataru IMAJUKU  Takuya OHARA  Yoshiaki SONE  Ippei SHAKE  Yasunori SAMESHIMA  Masahiko JINNO  

     
    SURVEY PAPER-Protection and Restoration

      Vol:
    E90-B No:8
      Page(s):
    1952-1959

    The objective of this paper is to survey the Generalized Multi-Protocol Label Switching (GMPLS) based recovery technology for optical transport networks. This paper introduces standardization activities of the GMPLS based recovery technology in the Internet Engineering Task Force (IETF), and recent progress of related experiments. In addition, this paper extracts requirements for the GMPLS based recovery technology through the evaluation of existing network elements, which can be client nodes of the optical transport networks. The results of field evaluations on the GMPLS based recovery technology are also introduced in this paper. Then, this paper addresses the issues for future deployment of the GMPLS based recovery technology for the optical transport networks.

  • Recent Developments in and Challenges of Photonic Networking Technologies Open Access

    Ken-ichi SATO  

     
    INVITED SURVEY PAPER

      Vol:
    E90-B No:3
      Page(s):
    454-467

    The transport network paradigm is changing as evidenced by IP convergence and the divergence of architectures and technologies. Harnessing the full power of light will spur the creation of new broadband and ubiquitous services networks. To attain this, however, not only must photonic technologies be optimized, but they must also be coordinated with complementary electrical technologies. With regard to photonic network design technologies, further developments are necessary including very large scale network design, quasi-dynamic network design, and multi-layer optical path network design.

  • Optical Path Protection with Fast Extra Path Preemption

    Shoichiro SENO  Teruko FUJII  Motofumi TANABE  Eiichi HORIUCHI  Yoshimasa BABA  Tetsuo IDEGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:11
      Page(s):
    3032-3039

    Emerging GMPLS (Generalized Multi-Protocol Label Switching)-based photonic networks are expected to realize the dynamic allocation of network resources for a wide range of applications, such as carriers' backbone networks as well as enterprise core networks and GRID computing. To address diverse reliability requirements corresponding to different application needs, photonic networks have to support various optical path recovery schemes. Thus GMPLS standardization bodies have developed failure recovery protocols for 1+1 protection, 1:N protection and restoration, with support of extra traffic and shared use of back-up resources. Whereas the standardization efforts cover a full spectrum of recovery schemes, there have not been many reports on actual implementations of such functionalities, and none of them included extra traffic. This paper introduces an OXC (Optical Cross Connect) implementation of GMPLS's failure recovery functionalities supporting 1+1 protection, M:N protection and extra path. Here extra path is an extension of GMPLS protection's extra traffic which can partially reuse protected paths' back-up resources. Evaluation of the implementation confirms rapid recovery of protected traffic upon a failure, even when preemption of an extra path is involved. It is also shown that its preemption scheme can resolve the issue of the poor scalability of GMPLS-based preemption when multiple extra paths are preempted upon a failure.

  • Highly-Reliable and Fast M:N End-to-End Restoration Scheme for Photonic IP Networks

    Wataru IMAJUKU  Yoshiaki SONE  Naohide NAGATSU  Akio SAHARA  Yoshihiro TAKIGAWA  

     
    PAPER

      Vol:
    E88-B No:10
      Page(s):
    3914-3921

    The concept of an optical path layer has become increasingly attractive with the growth of traffic in the backbone network. The recent advances in optical switching technology support the deployment of optical cross-connect (OXC) nodes and the construction of large-scale optical path networks. This paper proposes a highly-reliable and fast pre-assigned restoration scheme for optical path networks. To achieve the pre-assigned restoration scheme, this paper investigates the extension of the Generalized Multi-Protocol Label Switching (GMPLS) protocol functionality considering the interoperability with GMPLS capable IP routers in the future. This paper also proposes a new network control architecture called the "partition model" through discussion of network architecture. We clarify that the M:N end-to-end restoration scheme achieves efficient resource usage and management of the network especially in the "partitioned model" network. With the finite design of the GMPLS protocol extension based on the M:N end-to-end restoration scheme, we successfully achieve an intelligent protocol that guarantees 100% recovery against single link failure and is capable of protection grade fast restoration of the optical path less than 50 msec. To our knowledge, this is the first demonstration of GMPLS-controlled protection grade fast optical path restoration.

  • Comparison of All-Optical Architectures for Backbone Networks

    Noriaki KAMIYAMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E87-B No:10
      Page(s):
    2877-2885

    All-optical switching is of considerable interest, since it enables the construction of large-capacity networks with protocol- and bit-rate-independent transmission. In this paper, we determine the most desirable of three all-optical architectures for a backbone network, by comparing the following architectures: the wavelength-routed network, the slotted wavelength-routed network, and the optical burst switching network. After proposing an optical path accommodation algorithm that minimizes the total fiber length, we evaluate the total network cost in order to compare the availability of the first two architectures. We then compare the architectures in terms of the burst blocking probability in order to clarify the effectiveness of the third architecture.

  • Traffic-Driven Optical IP Networking Architecture

    Junichi MURAYAMA  Takahiro TSUJIMOTO  Kenichi MATSUI  Kazuhiro MATSUDA  Hiroshi ISHII  

     
    PAPER

      Vol:
    E86-B No:8
      Page(s):
    2294-2301

    This paper proposes a traffic-driven optical IP networking architecture for service provider networks. Its design is derived from the optical GMPLS architecture, which provides high performance but is not scalable since both optical paths and IP routes need to be arranged in a mesh topology. To improve scalability, we first modified the configuration so that paths and routes can be arranged in a tree topology. However, this approach may degrade performance due to traffic concentration at each tree's root. To prevent such performance degradation, we further modified the architecture so that both cut-through optical paths and cut-through IP routes can be assigned reactively, according to traffic demand, and these can work together in cooperation. As a result, our architecture achieves both high performance and scalability, in that the whole network performance can be maintained without a massive increase in the number of optical paths and IP routes, even if the number of customer networks grows.

  • IP Traffic Condition Based Dynamic Optical Path Allocation Network System

    Yoshihiro NAKAHIRA  Saeko OSHIBA  

     
    LETTER

      Vol:
    E83-B No:10
      Page(s):
    2364-2367

    This paper describes experimental results of the IP traffic condition based dynamic optical path allocation network system. In the system, optical paths are dynamically allocated between congested node pairs to cope with traffic fluctuations. It seems that this experiment is the first of its kind in the world.

  • Robust IP Backbone Network Utilizing WDM Optical Paths

    Atsushi WATANABE  Satoru OKAMOTO  Ken-ichi SATO  

     
    PAPER-Communication Networks

      Vol:
    E82-C No:8
      Page(s):
    1381-1386

    A wavelength division multiplexing (WDM) optical path-based Internet protocol (IP) backbone network is proposed as a cost-effective way of realizing robust IP-over-photonic systems. The WDM optical path is based on WDM transmission and wavelength routing. Between end-to-end IP backbone routers, the WDM optical path, a fat and robust optical pipe, is defined across photonic transport systems (PTS's). Tera-bit class PTS's will be required for the future IP backbone network and this level of performance is achievable. Optical layer routing is done at intermediate nodes, so the electrical packet-by-packet routing required by existing systems is eliminated. An optical signal format that permits cost-effective IP packet transmission is presented. WDM optical paths directly accommodate the IP packets via layer-2 frames. The cost-effectiveness of the proposed system, especially for heavy traffic, is demonstrated from the viewpoint of the overall network traffic transport capability and network node cost. The proposed system is as robust as existing systems; e. g. fault/degradation localization mechanism and optical layer network protection one are implemented. Thus the proposed IP-over-photonic system will create cost-effective and robust IP backbone networks.

  • Robust IP Backbone Network Utilizing WDM Optical Paths

    Atsushi WATANABE  Satoru OKAMOTO  Ken-ichi SATO  

     
    PAPER-Communication Networks

      Vol:
    E82-B No:8
      Page(s):
    1115-1120

    A wavelength division multiplexing (WDM) optical path-based Internet protocol (IP) backbone network is proposed as a cost-effective way of realizing robust IP-over-photonic systems. The WDM optical path is based on WDM transmission and wavelength routing. Between end-to-end IP backbone routers, the WDM optical path, a fat and robust optical pipe, is defined across photonic transport systems (PTS's). Tera-bit class PTS's will be required for the future IP backbone network and this level of performance is achievable. Optical layer routing is done at intermediate nodes, so the electrical packet-by-packet routing required by existing systems is eliminated. An optical signal format that permits cost-effective IP packet transmission is presented. WDM optical paths directly accommodate the IP packets via layer-2 frames. The cost-effectiveness of the proposed system, especially for heavy traffic, is demonstrated from the viewpoint of the overall network traffic transport capability and network node cost. The proposed system is as robust as existing systems; e. g. fault/degradation localization mechanism and optical layer network protection one are implemented. Thus the proposed IP-over-photonic system will create cost-effective and robust IP backbone networks.

1-20hit(30hit)