The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] organic photovoltaic cell(6hit)

1-6hit
  • Peptide Addition Effect of the Active Layer Precursor Solution Containing Poor Solvent on Photoelectrochemical Characteristics of the Thin Film Organic Photovoltaic Cells

    Hirokazu YAMANE  Shinji SHINDO  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    192-195

    The thin film organic photovoltaic cells (OPVs) using organic semiconductors are inferior to oxgen-resistance and water-resistance, and the OPVs have a drawback that the photoelectric conversion efficiency (η) is low. For high efficiency of the OPVs, control of bulk heterojunction (BHJ) structure in the active layer is demanded. Therefore, it is thought that we can control the BHJ structure easily if we can bring a change in the aggregated structure and the crystallinity of the BHJ structure by introducing the third component that is different from the organic semiconductor into the activity layer. In this study, we introduced peptide consisting of phenylalanine of 2 molecules into the active layer prepared by poor solvent addition effect for the organic thin film solar cells and intended to try high efficiency of the organic thin film solar cells and examined the electrochemistry characteristic of the cells.

  • Effect of Optical Intensity Distribution on Conversion Efficiency of Inverted Organic Photovoltaic Cell

    Toshifumi KOBORI  Norihiko KAMATA  Takeshi FUKUDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    114-117

    An optical intensity distribution under light irradiation in the organic photovoltaic cell affects the absorbance of the active layer, which determines the photovoltaic performance. In this research, we evaluated the optimum thickness of the organic active layer with poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] and [6,6]-phenyl C71-butyric acid methyl ester. The spectral response of external quantum efficiency was good agreement with the simulated optical intensity distribution within a device stack as a function of the position and the wavelength. As a result, the highest photoconversion efficiency of 10.1% was achieved for the inverted device structure.

  • Optimization and Evaluation of Temperature Dependences in Graded Organic Solar Cells with Cupper Phthalocyanine/Fullerene System

    Takuya HORIOKA  Zhaokui WANG  Shigeki NAKA  Hiroyuki OKADA  

     
    PAPER-Electronic Materials

      Vol:
    E96-C No:8
      Page(s):
    1054-1060

    We have optimized and evaluated organic thin-film solar cell devices with a structure of graded junction. The graded junction consisting of donor and accepter materials was fabricated by varying the deposition rates of both materials with a continuous grading, using two evaporation sources of cupper phthalocyanine and fullerene as p- and n-type materials, respectively. By evaluating device characteristics, optimized device structure ITO/CuPc (10 nm)/graded layer (35 nm)/C60 (15 nm)/BCP (10 nm)/Ag (100 nm) with an efficiency of 1.36% was obtained. In the structure, short-circuit current density was the largest and existence of larger voltage dependence in current density was observed. In addition, we have measured temperature dependences of current density versus voltage characteristics in the graded organic solar cell under illumination. The carrier extraction was enhanced by changing voltage possibly due to the internal electric field of the graded junction.

  • Reduced Surface Roughness of P3HT:PCBM Thin Films with Different Ratios by Electrospray Deposition Methods

    Takeshi FUKUDA  Kenji TAKAGI  Norihiko KAMATA  Jungmyoung JU  Yutaka YAMAGATA  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    362-364

    We demonstrated the reduced surface roughness of poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) thin films with different ratios fabricated by the electrospray deposition (ESD) method. Aggregated structures were observed at the lower voltage, and the uniformity became bad at the higher voltage. Anyway, the minimum root mean square (RMS) roughness was 1.46 nm by optimizing the applied voltage.

  • Fabrication of Small-Molecular-Weight Organic Thin-Film Solar Cells by Combination of Wet and Dry Processes

    Tetsuya TAIMA  Toshihiro YAMANARI  Kohjiro HARA  Kazuhiro SAITO  

     
    PAPER-Organic Molecular Devices

      Vol:
    E89-C No:12
      Page(s):
    1771-1774

    We succeeded to fabricate p-n heterojunction and bulkheterojunction small-molecular-weight organic thin-film solar cells by combination of dry (p-type = zinc phthalocyanine, n-type = fullerene) and wet (p-type = tetra-tert-butyl zinc phthalocyanine, n-type = [6,6]-phenyl-C61-buteric acid methyl ester) processes. Relationship between morphologies of semiconducting layers and photovoltaic properties was investigated. The p-n heterojunction organic thin-film solar cells based on dry process, where surface roughness was approximately 2 nm, showed the highest power conversion efficiency of 1.3% in this paper.

  • Effects of Cathode Materials on Organic p-i-n Heterojunction Photovoltaic Cells

    Tetsuya TAIMA  Masayuki CHIKAMATSU  Yuji YOSHIDA  Kazuhiro SAITO  Kiyoshi YASE  

     
    PAPER-Characterization and Abilities of Organic Electronic Devices

      Vol:
    E87-C No:12
      Page(s):
    2045-2048

    We fabricated organic p-n heterojunction, p-i-n heterojunction and all-i-layer photovoltaic cells of a zinc phthalocyanine (ZnPc)/1:1 codeposition (ZnPc:C60)/C60 structure with Al cathode. We investigated the effects of the device structure and the cathode material on the photovoltaic properties. The thickness of the i-layer was changed as 0 nm (= p-n heterojunction), 10 nm (= p-i-n heterojunction) or 50 nm (= all-i-layer) with the total thickness of 50 nm. We also changed cathode materials from Al to low-workfunction Mg:Ag electrode. Photovoltaic properties, i.e., short-circuit current density, fill factor and power conversion efficiency, were strongly influenced by the device structure and cathode material. Finally, the power conversion efficiency showed a maximum (1.5%) with the p-i-n structure and a Mg:Ag cathode under Air Mass 1.5 global solar conditions.