The search functionality is under construction.

Keyword Search Result

[Keyword] outage probability(90hit)

1-20hit(90hit)

  • Secrecy Outage Probability and Secrecy Diversity Order of Alamouti STBC with Decision Feedback Detection over Time-Selective Fading Channels Open Access

    Gyulim KIM  Hoojin LEE  Xinrong LI  Seong Ho CHAE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:6
      Page(s):
    923-927

    This letter studies the secrecy outage probability (SOP) and the secrecy diversity order of Alamouti STBC with decision feedback (DF) detection over the time-selective fading channels. For given temporal correlations, we have derived the exact SOPs and their asymptotic approximations for all possible combinations of detection schemes including joint maximum likehood (JML), zero-forcing (ZF), and DF at Bob and Eve. We reveal that the SOP is mainly influenced by the detection scheme of the legitimate receiver rather than eavesdropper and the achievable secrecy diversity order converges to two and one for JML only at Bob (i.e., JML-JML/ZF/DF) and for the other cases (i.e., ZF-JML/ZF/DF, DF-JML/ZF/DF), respectively. Here, p-q combination pair indicates that Bob and Eve adopt the detection method p ∈ {JML, ZF, DF} and q ∈ {JML, ZF, DF}, respectively.

  • Exploiting RIS-Aided Cooperative Non-Orthogonal Multiple Access with Full-Duplex Relaying

    Guoqing DONG  Zhen YANG  Youhong FENG  Bin LYU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2023/01/06
      Vol:
    E106-A No:7
      Page(s):
    1011-1015

    In this paper, a novel reconfigurable intelligent surface (RIS)-aided full-duplex (FD) cooperative non-orthogonal multiple access (CNOMA) network is investigated over Nakagami-m fading channels, where two RISs are employed to help the communication of paired users. To evaluate the potential benefits of our proposed scheme, we first derive the closed-form expressions of the outage probability. Then, we derive users' diversity orders according to the asymptotic approximation at high signal-to-noise-ratio (SNR). Simulation results validate our analysis and reveal that users' diversity orders are affected by their channel fading parameters, the self-interference of FD, and the number of RIS elements.

  • On Secrecy Performance Analysis for Downlink RIS-Aided NOMA Systems

    Shu XU  Chen LIU  Hong WANG  Mujun QIAN  Jin LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/11/21
      Vol:
    E106-B No:5
      Page(s):
    402-415

    Reconfigurable intelligent surface (RIS) has the capability of boosting system performance by manipulating the wireless propagation environment. This paper investigates a downlink RIS-aided non-orthogonal multiple access (NOMA) system, where a RIS is deployed to enhance physical-layer security (PLS) in the presence of an eavesdropper. In order to improve the main link's security, the RIS is deployed between the source and the users, in which a reflecting element separation scheme is developed to aid data transmission of both the cell-center and the cell-edge users. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed RIS-aided NOMA scheme. To obtain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. Moreover, the secrecy diversity order is derived according to the asymptotic approximation in the high signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER) regime. Furthermore, based on the derived results, the power allocation coefficient and number of elements are optimized to minimize the system SOP. Simulations demonstrate that the theoretical results match well with the simulation results and the SOP of the proposed scheme is clearly less than that of the conventional orthogonal multiple access (OMA) scheme obviously.

  • Intelligent Reconfigurable Surface-Aided Space-Time Line Code for 6G IoT Systems: A Low-Complexity Approach

    Donghyun KIM  Bang Chul JUNG  

     
    LETTER-Information Theory

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:2
      Page(s):
    154-158

    Intelligent reconfigurable surfaces (IRS) have attracted much attention from both industry and academia due to their performance improving capability and low complexity for 6G wireless communication systems. In this letter, we introduce an IRS-assisted space-time line code (STLC) technique. The STLC was introduced as a promising technique to acquire the optimal diversity gain in 1×2 single-input multiple-output (SIMO) channel without channel state information at receiver (CSIR). Using the cosine similarity theorem, we propose a novel phase-steering technique for the proposed IRS-assisted STLC technique. We also mathematically characterize the proposed IRS-assisted STLC technique in terms of outage probability and bit-error rate (BER). Based on computer simulations, it is shown that the results of analysis shows well match with the computer simulation results for various communication scenarios.

  • Interference Management Using Beamforming Techniques for Line-of-Sight Femtocell Networks

    Khalid Sheikhidris MOHAMED  Mohamad Yusoff ALIAS  Mardeni ROSLEE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/01/24
      Vol:
    E103-B No:8
      Page(s):
    881-887

    Femtocell structures can offer better voice and data exchange in cellular networks. However, interference in such networks poses a major challenge in the practical development of cellular communication. To tackle this issue, an advanced interference mitigation scheme for Line-Of-Sight (LOS) femtocell networks in indoor environments is proposed in this paper. Using a femtocell management system (FMS) that controls all femtocells in a service area, the aggressor femtocells are identified and then the transmitted beam patterns are adjusted using the linear array antenna equipped in each femtocell to mitigate the interference contribution to the neighbouring femtocells. Prior to that, the affected users are switched to the femtocells that provide better throughput levels to avoid increasing the outage probability. This paper considers different femtocell deployment indexes to verify and justifies the feasibility of the findings in different density areas. Relative to fixed and adaptive power control schemes, the proposed scheme achieves approximately 5% spectral efficiency (SE) improvement, about 10% outage probability reduction, and about 7% Mbps average user throughput improvement.

  • Security Performance Analysis of Joint Multi-Relay and Jammer Selection for Physical-Layer Security under Nakagami-m Fading Channel

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Nan SHA  Mingxi GUO  Kui XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:12
      Page(s):
    2015-2020

    In this paper, we investigate a novel joint multi-relay and jammer selection (JMRJS) scheme in order to improve the physical layer security of wireless networks. In the JMRJS scheme, all the relays succeeding in source decoding are selected to assist in the source signal transmission and meanwhile, all the remaining relay nodes are employed to act as friendly jammers to disturb the eavesdroppers by broadcasting artificial noise. Based on the more general Nakagami-m fading channel, we analyze the security performance of the JMRJS scheme for protecting the source signal against eavesdropping. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the JMRJS scheme over Nakagami-m fading channel are derived. Moreover, we analyze the security-reliability tradeoff (SRT) of this scheme. Simulation results show that as the number of decode-and-forward (DF)relay nodes increases, the SRT of the JMRJS scheme improves notably. And when the transmit power is below a certain value, the SRT of the JMRJS scheme consistently outperforms the joint single-relay and jammer selection (JSRJS) scheme and joint equal-relay and jammer selection (JERJS) scheme respectively. In addition, the SRT of this scheme is always better than that of the multi-relay selection (MRS) scheme.

  • Security Performance Analysis for Relay Selection in Cooperative Communication System under Nakagami-m Fading Channel

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Nan SHA  Shijie WANG  Kui XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/09/14
      Vol:
    E102-B No:3
      Page(s):
    603-612

    In this paper, we investigate a cooperative communication system comprised of a source, a destination, and multiple decode-and-forward (DF) relays in the presence of a potential malicious eavesdropper is within or without the coverage area of the source. Based on the more general Nakagami-m fading channels, we analyze the security performance of the single-relay selection and multi-relay selection schemes for protecting the source against eavesdropping. In the single-relay selection scheme, only the best relay is chosen to assist in the source transmission. Differing from the single-relay selection, multi-relay selection scheme allows multiple relays to forward the source to the destination. We also consider the classic direct transmission as a benchmark scheme to compare with the two relay selection schemes. We derive the exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the direct transmission, the single-relay selection as well as the multi-relay selection scheme over Nakagami-m fading channel when the eavesdropper is within and without the coverage area of the source. Moreover, the security-reliability tradeoff (SRT) of these three schemes are also analyzed. It is verified that the SRT of the multi-relay selection consistently outperforms the single-relay selection, which of both the single-relay and multi-relay selection schemes outperform the direct transmission when the number of relays is large, no matter the eavesdropper is within or without the coverage of the source. In addition, as the number of DF relays increases, the SRT of relay selection schemes improve notably. However, the SRT of both two relay selection approaches become worse when the eavesdropper is within the coverage area of the source.

  • Secure Communications for Primary Users in Cognitive Radio Networks with Collusive Eavesdroppers

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:11
      Page(s):
    1970-1974

    This letter studies physical-layer security in a cognitive radio (CR) network, where a primary user (PU) is eavesdropped by multiple collusive eavesdroppers. Under the PU secrecy outage constraint to protect the PU, the secondary users (SUs) are assumed to be allowed to transmit. The problem of joint SU scheduling and power control to maximize the SU ergodic transmission rate is investigated for both the scenarios of perfect and imperfect channel state information (CSI). It is shown that, although collusive eavesdroppers degrade the PU performance compared to non-collusive eavesdroppers, the SU performance is actually improved when the number of eavesdroppers is large. It is also shown that our proposed scheme with imperfect CSI can guarantee that the PU performance is unaffected by imperfect CSI.

  • Joint User and Power Allocation in Underlay Cognitive Radio Networks with Multiple Primary Users' Security Constraints

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:9
      Page(s):
    2061-2064

    In this letter, we consider a cognitive radio network where multiple secondary users (SUs) share the spectrum bands with multiple primary users (PUs) who are facing security threats from multiple eavesdroppers. By adopting the PU secrecy outage constraint to protect the PUs, we optimize the joint user and power allocation for the SUs to maximize the SU ergodic transmission rate. Simulation results are presented to verify the effectiveness of the proposed algorithm. It is shown that the proposed algorithm outperforms the existing scheme, especially for a large number of PUs and a small number of SUs. It is also shown that the number of eavesdroppers has negligible impact on the performance improvement of the proposed algorithm compared to the existing scheme. In addition, it is shown that increasing the number of eavesdroppers has insignificant impact on the SU performance if the number of eavesdroppers is already large.

  • Performance Analysis of Distributed OSTBC-MIMO Systems Using Adaptive M-QAM Transmission over i.n.i.d. Generalized-K Fading Channels

    Jie HE  Kun XIAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/06
      Vol:
    E100-B No:5
      Page(s):
    843-851

    In this paper, the performance of orthogonal space-time block codes (OSTBC) for distributed multiple-input multiple-output (MIMO) systems employing adaptive M-QAM transmission is investigated over independent but not necessarily identically distributed (i.n.i.d.) generalized-K fading channels with arbitrary positive integer-valued k(inversely reflects the shadowing severity) and m (inversely reflects the fading severity). Before this, i.n.i.d. generalized-K fading channel has never been considered for distributed OSTBC-MIMO systems. Especially, the effects of the shape parameter k on the distributed OSTBC-MIMO system performance are unknown. Thus, we investigate mainly the significance of the shape parameter k on the distributed OSTBC-MIMO system performance, in terms of the average symbol error probability (SEP), outage probability, and spectral efficiency (SE). By establishing the system model, the approximated probability density function (PDF) of the equivalent signal to noise ratio (SNR) is derived and thereafter the approximated closed-form expressions of the above performance metrics are obtained successively. Finally, the derived expressions are validated via a set of Monte-Carlo simulations and the implications of the shape parameter k on the overall performance are highlighted.

  • On the Performance of Dual-Hop Variable-Gain AF Relaying with Beamforming over η-µ Fading Channels

    Ayaz HUSSAIN  Sang-Hyo KIM  Seok-Ho CHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/17
      Vol:
    E100-B No:4
      Page(s):
    619-626

    A dual-hop amplify-and-forward (AF) relaying system with beamforming is analyzed over η-µ fading channels that includes Nakagami-m, Nakagami-q (Hoyt), and Rayleigh fading channels as special cases. New and exact expressions for the outage probability (OP) and average capacity are derived. Moreover, a new asymptotic analysis is also conducted for the OP and average capacity in terms of basic elementary functions which make it easy to understand the system behavior and the impact of channel parameters. The viability of the analysis is verified by Monte Carlo simulations.

  • Reliability-Security Tradeoff for Secure Transmission with Untrusted Relays

    Dechuan CHEN  Weiwei YANG  Jianwei HU  Yueming CAI  Xin LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:12
      Page(s):
    2597-2599

    In this paper, we identify the tradeoff between security and reliability in the amplify-and-forward (AF) distributed beamforming (DBF) cooperative network with K untrusted relays. In particular, we derive the closed-form expressions for the connection outage probability (COP), the secrecy outage probability (SOP), the tradeoff relationship, and the secrecy throughput. Analytical and simulation results demonstrate that increasing K leads to the enhancement of the reliability performance, but the degradation of the security performance. This tradeoff also means that there exists an optimal K maximizing the secrecy throughput.

  • Opportunistic Relaying Analysis Using Antenna Selection under Adaptive Transmission

    Ramesh KUMAR  Abdul AZIZ  Inwhee JOE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/16
      Vol:
    E99-B No:11
      Page(s):
    2435-2441

    In this paper, we propose and analyze the opportunistic amplify-and-forward (AF) relaying scheme using antenna selection in conjunction with different adaptive transmission techniques over Rayleigh fading channels. In this scheme, the best antenna of a source and the best relay are selected for communication between the source and destination. Closed-form expressions for the outage probability and average symbol error rate (SER) are derived to confirm that increasing the number of antennas is the best option as compared with increasing the number of relays. We also obtain closed-form expressions for the average channel capacity under three different adaptive transmission techniques: 1) optimal power and rate adaptation; 2) constant power with optimal rate adaptation; and 3) channel inversion with a fixed rate. The channel capacity performance of the considered adaptive transmission techniques is evaluated and compared with a different number of relays and various antennas configurations for each adaptive technique. Our derived analytical results are verified through extensive Monte Carlo simulations.

  • Performance of APD-Based Amplify-and-Forward Relaying FSO Systems over Atmospheric Turbulence Channels

    Thanh V. PHAM  Anh T. PHAM  

     
    PAPER-Communication Theory and Signals

      Vol:
    E99-A No:7
      Page(s):
    1455-1464

    This paper proposes and theoretically analyzes the performance of amplify-and-forward (AF) relaying free-space optical (FSO) systems using avalanche photodiode (APD) over atmospheric turbulence channels. APD is used at each relay node and at the destination for optical signal conversion and amplification. Both serial and parallel relaying configurations are considered and the subcarrier binary phase-shift keying (SC-BPSK) signaling is employed. Closed-form expressions for the outage probability and the bit-error rate (BER) of the proposed system are analytically derived, taking into account the accumulating amplification noise as well as the receiver noise at the relay nodes and at the destination. Monte-Carlo simulations are used to validate the theoretical analysis, and an excellent agreement between the analytical and simulation results is confirmed.

  • On the Outage Performance of Decode-and-Forward Opportunistic Mobile Relaying with Direct Link

    Hui TIAN  Kui XU  Youyun XU  Xiaochen XIA  

     
    PAPER-Network

      Vol:
    E99-B No:3
      Page(s):
    654-665

    In this paper, we investigate the effect of outdated channel state information (CSI) on decode-and-forward opportunistic mobile relaying networks with direct link (DL) between source node and destination node. Relay selection schemes with different levels of CSI are considered: 1) only outdated CSI is available during the relay selection procedure; 2) not only outdated CSI but also second-order statistics information are available in relay selection process. Three relay selection schemes are proposed based on the two levels of outdated CSI. Closed-form expressions of the outage probability are derived for the proposed relay selection schemes. Meanwhile, the asymptotic behavior and the achievable diversity of three relay selection schemes are analyzed. Finally, simulation results are presented to verify our analytical results.

  • Outage Probability of Incremental Selection AF Relaying Scheme in Half-Duplex Cooperative Relay Networks

    Jeehoon LEE  Minjoong RIM  Kiseon KIM  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2439-2445

    An incremental relaying protocol is a promising scheme for preventing the inefficient use of resources in half-duplex cooperative relay networks. In particular, the incremental selection amplify-and-forward (ISAF) relaying scheme is a well-designed protocol under the condition that the source-to-destination (SD) link is static during the two transmission phases. However, from a practical viewpoint, the SD link is not static but varies with time, and thus the ISAF relaying scheme may not work well in the field. In this work, we first show that the outage performance of the ISAF relaying scheme may decrease when the SD link is not static during the two transmission phases. We then propose a modified version of the ISAF relaying scheme which overcomes such a limitation of the ISAF relaying scheme under time-varying environments. Finally, numerical and simulation results are provided to support our findings.

  • Energy-Harvesting Relay Selection Schemes for Decode-and-Forward Dual-Hop Networks

    Pham Ngoc SON  Hyung Yun KONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:12
      Page(s):
    2485-2495

    In this paper, we analyze a cooperative communication network with multi energy-harvesting and decode-and-forward relays in which the best relay is selected based on criteria such as Maximizing First-Hop Signal to Noise Ratios (SNRs) (MFHS protocol), Maximizing Second-Hop SNRs (MSHS protocol), and Maximizing End-to-End SNRs (MEES protocol). In these protocols, the relays apply power-splitting receivers to harvest energy from radio frequency signals emitted from a source. Thus, each received SNR in the second hop is a function of a direct relay-destination gain and an indirect source-relay gain. The system performance of the proposed protocols is evaluated via exact outage probability analyses and Monte Carlo simulations. For further comparisons, an energy-harvesting decode-and-forward scheme with randomly relay selection (RRS protocol) and an energy-harvesting amplify-and-forward scheme (BAF protocol) are investigated and discussed. The simulation results show that 1) the MEES protocol outperforms the MFHS and MSHS protocols, and the MFHS protocol is more efficient than the MSHS protocol in the low SNR regions; 2) the proposed protocols achieve the best performance at the specific optimal power splitting ratios for which the MEES protocol has a balanced ratio for energy harvesting and decoding capacity; and 3) the theoretical analyses agree well with the simulation results.

  • Power Allocation for Ergodic Capacity and Outage Probability Tradeoff in Cognitive Radio Networks

    Qun LI  Ding XU  

     
    PAPER

      Vol:
    E98-B No:10
      Page(s):
    1988-1995

    The problem of power allocation for the secondary user (SU) in a cognitive radio (CR) network is investigated in this paper. The primary user (PU) is protected by the average interference power constraint. Besides the average interference power constraint at the PU, the transmit power of the SU is also subject to the peak or average transmit power constraint. The aim is to balance between the goal of maximizing the ergodic capacity and the goal of minimizing the outage probability of the SU. Power allocation schemes are then proposed under the aforementioned setups. It is shown that the proposed power allocation schemes can achieve high ergodic capacity while maintaining low outage probability, whereas existing schemes achieve either high ergodic capacity with high outage probability or low outage probability with low ergodic capacity.

  • Service Outage Constrained Outage Probability Minimizing Joint Channel, Power and Rate Allocation for Cognitive Radio Multicast Networks

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:8
      Page(s):
    1854-1857

    We propose a joint channel, power and rate allocation scheme to minimize the weighted group outage probability of the secondary users (SUs) in a downlink cognitive radio (CR) multicast network coexisting with a primary network, subject to the service outage constraint as well as the interference power constraint and the transmit power constraint. It is validated by simulation results that, compared to the existing schemes, the proposed scheme achieves lower group outage probability.

  • Performance Analysis in the High SNR Region for MF in the Downlink of Massive MIMO Systems

    Wence ZHANG  Yan NI  Hong REN  Ming CHEN  Jianxin DAI  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E98-A No:8
      Page(s):
    1865-1870

    This letter presents performance analysis in the high signal-to-noise ratio (SNR) region for matched filter (MF) precoding in single cell Massive MIMO systems. The outage probability function is derived in closed form, and the data rate of each user is also given. We have also presented asymptotic analysis in terms of data rate for MF when the number of users and the number of antennas grow without bounds. The expressions of these analytical results are rather simple and are thus convenient for overall performance evaluation. The simulation results show that the analysis are very accurate.

1-20hit(90hit)