1-8hit |
Juntao GAO Jiajia LIU Xiaohong JIANG Osamu TAKAHASHI Norio SHIRATORI
The capacity of general mobile ad hoc networks (MANETs) remains largely unknown up to now, which significantly hinders the development and commercialization of such networks. Available throughput capacity studies of MANETs mainly focus on either the order sense capacity scaling laws, the exact throughput capacity under a specific algorithm, or the exact throughput capacity without a careful consideration of critical wireless interference and transmission range issues. In this paper, we explore the exact throughput capacity for a class of MANETs, where we adopt group-based scheduling to schedule simultaneous link transmissions for interference avoidance and allow the transmission range of each node to be adjusted. We first determine a general throughput capacity upper bound for the concerned MANETs, which holds for any feasible packet delivery algorithm in such networks. We then prove that the upper bound we determined is just the exact throughput capacity for this class of MANETs by showing that for any traffic input rate within the throughput capacity upper bound, there exists a corresponding two-hop relay algorithm to stabilize such networks. A closed-form upper bound for packet delay is further derived under any traffic input rate within the throughput capacity. Finally, based on the network capacity result, we examine the impacts of transmission range and node density upon network capacity.
Ying WANG Zixiong CHEN Cong SHI Ping ZHANG
With development of wireless communication technologies, users are no longer satisfied with only a single service provided per time. They are willing to enjoy multiple services simultaneously. Therefore scheduling multiple services per user becomes quite important usability issue in the area of resource management. In this paper, the multiple-service scheduling problem is firstly formulated as an integrated optimization problem based on a utility function in homogeneous service systems. Due to its NP-hard characteristic, a set of low-complexity sub-optimal algorithms is therefore proposed and used to schedule resources for multiple services per user at the downlink of Orthogonal Frequency Division Multiplexing (OFDM) systems. The proposed algorithms are capable to effectively and efficiently distribute assigned resources among multiple services for one user. Moreover the utility of our algorithms is further extended from homogeneous service systems to heterogeneous service systems. And full exploitation of multi-user diversity gain is achieved while guaranteeing quality of service (QoS). The simulation results show that the proposed algorithm outperforms traditional algorithm in terms of system best effort service throughput and fairness criterion.
Athanassios V. ADAMIS Konstantinos N. MALIATSOS Philip CONSTANTINOU
Overlay Access Technology can compensate for the spectrum underutilization problem by exploiting Cognitive Radios capabilities. MAC design is an important aspect of Overlay Access research. In this paper we present the overlay access environment and the challenges it poses to MAC design. Then, we propose the use of a modified Distributed Coordination Function as the MAC protocol for distributed Overlay Access networks. The resulted Intermittent DCF performs with robustness in the demanding overlay access environment, which is characterized by frequent spectrum scan procedure interruptions and low achievable transmission rates. The most recent DCF Markov Chain Model is extended in order to include the overlay operation modifications. Our extension concerns the slot duration expectations calculation which, in the overlay environment, have not constant values but depend on overlay operation parameters. Using the analytical model we evaluate the performance of the DCF under the effect of certain overlay access parameters. The new analytical model predictions are validated with simulations, and are found to accurately capture many interesting features of the overlay operation. Our model can be used in feasibility studies of realistic overlay scenarios and in admission control algorithms of QoS enabled distributed overlay access networks that engage the Intermittent DCF.
Jae-Min LEE Soo Hee HAN Hong Seong PARK Wook Hyun KWON
In this paper, a refined analytic model is presented for the IEEE 802.11 distributed coordination function (DCF) in a time-varying channel environment. In the proposed model, the channel is modelled using a finite-state Markov (FSM) chain. The saturation throughput and average packet delay are analyzed from the proposed model. It is shown using OPNETTM and UltraSANTM simulations that the proposed model accurately predicts the performance of the IEEE 802.11 DCF.
Minho JO HyoungDo KIM Hyogon KIM
In order to improve the quality of VoIP services, an adaptive routing method is proposed in the application layer of Internet gateways. This method determines routing paths based on the average one-way delays in a predetermined re-routing interval. In order to evaluate the performance of the method, five different routing policies are specifically designed and tested. Experimental results show that the method can improve the QoS of Internet phone services.
Cheon Won CHOI Woo Cheol SHIN Jin Kyung PARK Jun HA Ho-Kyoung LEE
In provisioning packet data service on wireless cellular networks, a scheme of altering connection status between mobile and base stations appeared intending to efficiently utilize resource during idle periods. In such a scheme, connection components are sequentially released as an idle period persists, while the transmitting station converts to an transmission activity mode as the station is loaded with packets. However, actual resume of transmission activity is postponed by connection retrieval time to restore lost connection components. In general, an idle period affects the following connection retrieval time, which in turn produces an impact on the forthcoming idle period. Such chain reaction also makes a significant influence on overall packet delay performance. In this paper, as a way of improving packet delay performance, we propose two schemes identified as conservative extension and load threshold schemes. In the conservative extension scheme, we intentionally extend connection retrieval times so that each connection retrieval time is guaranteed not to be lower than a certain value. On the other hand, according to the load threshold scheme, a retrieval of lost connection components is postponed until packets are accumulated at the transmitting station up to a prescribed threshold. An increase in the value and threshold incurs an additional stand-by before resuming transmission activity in both proposed schemes. In turn, such intentional stand-by may contribute to regulating the length of idle period and connection retrieval time, and subsequently improving packet delay performance. To inspect the impact of conservative extension and load threshold schemes on packet delay performance, we first investigate the properties of idle periods. Secondly, for Poisson packet arrivals, we present an analytical method to exactly calculate the moments of packet delay time (at steady state) in each scheme. From numerical examples, we confirm the existence of non-trivial optimal value and threshold minimizing average packet delay or packet delay variation and conclude that conservative extension and load threshold schemes are able to enhance packet delay performance in various environments.
The location of stations on the buses can not be ignored in the analysis of the DQDB protocol, especially when traffic load is heavy. In this paper, we propose a new method to model the DQDB (Distributed Queue Dual Bus) protocol by assuming that the request arrival process depends on both the value of the request counter and the location of a station on the buses. By taking these dependences, we can catch the real behavior of the DQDB stations, which is locationally dependent and unfair under heavy load traffic. Based on this model, we analyze the DQDB system with finite buffer by considering the request counter states and buffer states separately and obtain the throughput, mean packet delay and packet reject probability of individual stations. The throughput in individual stations matches that of simulation very well within the range of traffic up to the channel capacity. Also the delay and packet reject rate performance is good up to moderate traffic load. These numerical results reveal the properties of the location dependence and the unfairness of DQDB system under heavy load condition. The analytic results under heavy load traffic for a general DQDB system has not been reported till now. Therefore we conclude that our model and analysis are valid and effective.
Chunxiang CHEN Masaharu KOMATSU Kozo KINOSHITA
In high-speed packet networks, protocol processing overhead time becomes remarkable in determining the system performance. In this paper, we present a new Selective-Repeat ARQ scheme (called Block SR-ARQ sheme), in which a packet is transmitted or retransmitted in the same way as basic SR-ARQ scheme, but a single acknowledgement packet is used to acknowledge a block of packets. The maximum number of packets acknowledged by an acknowledgement packet is defined as block size. We analyze the system throughput and the average packet delay over the system, and the accuracy of approximately analyzed results is validated by simulation. Furthermore, we show that there exists an optimal block size which obtains both the maximum throughput and the minimum average packet delay.