The search functionality is under construction.

Author Search Result

[Author] Ping ZHANG(39hit)

1-20hit(39hit)

  • Multilayer Four-Way Out-of-Phase Power Divider Based on Substrate Integrated Waveguide Technology

    Zhitao XU  Jun XU  Shuai LIU  Yaping ZHANG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    895-898

    In this paper, a novel multilayer substrate integrated waveguide (SIW) four-way out-of-phase power divider is proposed. It is realized by 3D mode coupling, on multilayer substrates. The structure consists of vertical Y-junction, lateral T-junction of SIW and lateral Y-junction of half-mode SIW. The advantages of the proposed structure are its low cost and ease of fabrication. Also, it can be integrated easily with other planar circuits such as microstrip circuits. An experimental circuit is designed and fabricated using the traditional printed circuit board technology. The simulated and measured results show that the return loss of the input port is above 15 dB over 8 to 11.8 GHz and transmissions are about -7.6±1.6 dB in the passband. It is expected that the proposed the proposed power divider will play an important role in the future integration of compact multilayer SIW circuits and systems.

  • Adaptive Hot Clutter Mitigation Using Subbanding by Multi-Channel Synthetic Aperture Radar

    Jiantao SUN  Ping ZHANG  

     
    LETTER-Sensing

      Vol:
    E93-B No:10
      Page(s):
    2837-2841

    A hot clutter mitigation algorithm based on Subbanding and Space Fast-time Adaptive Processing (Fast-time STAP) for Multi-channel Synthetic Aperture Radar (MSAR) is analyzed, and is compared with the method based on just fast-time STAP. Simulation results demonstrate that the method based on subbanding and fast-time STAP performs better than the method based on just fast-time STAP in hot clutter mitigation for MSAR.

  • Gradient-Enhanced Softmax for Face Recognition

    Linjun SUN  Weijun LI  Xin NING  Liping ZHANG  Xiaoli DONG  Wei HE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/07
      Vol:
    E103-D No:5
      Page(s):
    1185-1189

    This letter proposes a gradient-enhanced softmax supervisor for face recognition (FR) based on a deep convolutional neural network (DCNN). The proposed supervisor conducts the constant-normalized cosine to obtain the score for each class using a combination of the intra-class score and the soft maximum of the inter-class scores as the objective function. This mitigates the vanishing gradient problem in the conventional softmax classifier. The experiments on the public Labeled Faces in the Wild (LFW) database denote that the proposed supervisor achieves better results when compared with those achieved using the current state-of-the-art softmax-based approaches for FR.

  • Game Theory Based Distributed Beamforming for Multiuser MIMO Relay Networks

    Fan LIU  Hongbo XU  Jun LI  Ping ZHANG  

     
    PAPER-Mobile Information Network

      Vol:
    E95-A No:11
      Page(s):
    1888-1893

    In this paper, we propose a decentralized strategy to find out the linear precoding matrices for a two-hop multiuser relay communication system. From a game-theoretic perspective, we model the source allocation process as a strategic noncooperative game for fixing relay precoding matrix and the multiuser interference treating as additive colored noise. Alternately, from the global optimization perspective, we prove that the optimum relay precoding matrix follows the transceiver Winner filter structure for giving a set of source transmit matrices. Closed-form solutions are finally obtained by using our proposed joint iterative SMSE algorithm and numerical results are provided to give insights on the proposed algorithms.

  • Degree-of-Freedom Based Transmission Protocol Design with Optimization for Multi-Cell Multi-User Green Systems

    Chunguo LI  Yongping ZHANG  John M. CIOFFI  Luxi YANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:12
      Page(s):
    2784-2789

    The joint power allocation (PA) issue is studied in multi-user three-cell systems under the degree-of-freedom (DoF) based transmission protocol. This protocol makes all the interferences received at each user orthogonal to the useful signal at the same user by Jafar's topological interference management through index coding, which is proved to offer full DoF. Under this protocol, we formulate the joint power allocations problem based on the objective of energy efficiency under the required quality-of-service constraint. Due to the highly complicated Lagrangian equation, the properties of Lambert function are widely exploited to solve the problem using a closed-form expression. It is discovered that the relationship among the optimal power coefficients are completely different from that of the well-known water-filling method. Simulations demonstrate the energy efficiency of the designed scheme.

  • Subband Adaptive Loading for Combination of OFDM and Adaptive Antenna Array

    Ming LEI  Hiroshi HARADA  Hiromitsu WAKANA  Ping ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:9
      Page(s):
    2798-2802

    In this letter, we investigate the performance of using subband adaptive loading for the combination of orthogonal frequency division multiplexing (OFDM) and adaptive antenna array. The frequency-domain adaptive loading is very effective to deal with the frequency-selective fading which is inevitable in broadband wireless communications. However, almost all of the existing adaptive loading algorithms are based on "subcarrier-to-subcarrier" mode which may results in awfully large signaling overhead, since every subcarrier needs its own signaling loop between the transmitter and receiver. We investigate the performance of the combination of OFDM and adaptive antenna array when a subband adaptive loading algorithm is used to decrease the signaling overhead. It is shown by simulation results that at the cost of some tolerable performance loss, the signaling overhead of adaptive loading can be greatly reduced.

  • Utility Based Scheduling Algorithm for Multiple Services per User in OFDM Systems

    Ying WANG  Zixiong CHEN  Cong SHI  Ping ZHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3102-3112

    With development of wireless communication technologies, users are no longer satisfied with only a single service provided per time. They are willing to enjoy multiple services simultaneously. Therefore scheduling multiple services per user becomes quite important usability issue in the area of resource management. In this paper, the multiple-service scheduling problem is firstly formulated as an integrated optimization problem based on a utility function in homogeneous service systems. Due to its NP-hard characteristic, a set of low-complexity sub-optimal algorithms is therefore proposed and used to schedule resources for multiple services per user at the downlink of Orthogonal Frequency Division Multiplexing (OFDM) systems. The proposed algorithms are capable to effectively and efficiently distribute assigned resources among multiple services for one user. Moreover the utility of our algorithms is further extended from homogeneous service systems to heterogeneous service systems. And full exploitation of multi-user diversity gain is achieved while guaranteeing quality of service (QoS). The simulation results show that the proposed algorithm outperforms traditional algorithm in terms of system best effort service throughput and fairness criterion.

  • Interference Coordination in 3D MIMO-OFDMA Networks

    Ying WANG  Weidong ZHANG  Peilong LI  Ping ZHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    674-685

    This paper investigates interference coordination for 3-dimension (3D) antenna array systems in multicell multiple-input multiple-output (MIMO) and orthogonal frequency division multiple-access (OFDMA) wireless networks. Cell-center user and cell-edge user specific downtilts are accordingly partitioned through dynamic vertical beamforming in the 3D MIMO-OFDM communication systems. Taking these user specific downtilts into consideration, the objective of our proposed interference coordination scheme is to maximize both the cell-edge users' and cell-center users' throughput, subject to per base-station (BS) power, cell-center user and cell-edge user specific downtilt constraints. Here, two coordination techniques, consisting of the fractional frequency reuse (FFR) scheme and partial joint process (JP) coordinated multiple point (COMP) transmission mode, are introduced in this paper. To solve the interference coordination problem, two resource block (RB) partitioning schemes are proposed for the above-mentioned coordination techniques accordingly. Based on such RB partitioning, JP CoMP-based dual decomposition method (JC-DDM) and FFR-based dual decomposition method (FDDM) are proposed, where RB assignment, power allocation (RAPA) and downtilts adjustment are jointly optimized. To simplify the computation complexity, a suboptimal algorithm (SOA) is presented to decouple the optimization problem into three subproblems by using FFR scheme. Simulation results show that all of our proposed algorithms outperform the interference coordination scheme with fixed downtilts. JC-DDM and FDDM find the local optimal throughput with different transmission techniques, while SOA iteratively optimize the downtilts and RAPA which shows close-to-optimal performance with much lower computation complexity.

  • Cloud-Edge-Device Collaborative High Concurrency Access Management for Massive IoT Devices in Distribution Grid Open Access

    Shuai LI  Xinhong YOU  Shidong ZHANG  Mu FANG  Pengping ZHANG  

     
    PAPER-Systems and Control

      Pubricized:
    2023/10/26
      Vol:
    E107-A No:7
      Page(s):
    946-957

    Emerging data-intensive services in distribution grid impose requirements of high-concurrency access for massive internet of things (IoT) devices. However, the lack of effective high-concurrency access management results in severe performance degradation. To address this challenge, we propose a cloud-edge-device collaborative high-concurrency access management algorithm based on multi-timescale joint optimization of channel pre-allocation and load balancing degree. We formulate an optimization problem to minimize the weighted sum of edge-cloud load balancing degree and queuing delay under the constraint of access success rate. The problem is decomposed into a large-timescale channel pre-allocation subproblem solved by the device-edge collaborative access priority scoring mechanism, and a small-timescale data access control subproblem solved by the discounted empirical matching mechanism (DEM) with the perception of high-concurrency number and queue backlog. Particularly, information uncertainty caused by externalities is tackled by exploiting discounted empirical performance which accurately captures the performance influence of historical time points on present preference value. Simulation results demonstrate the effectiveness of the proposed algorithm in reducing edge-cloud load balancing degree and queuing delay.

  • Polarization and Spatial Statistics of Wideband MIMO Relay Channels in Urban Environment at 2.35 GHz

    Xin NIE  Jianhua ZHANG  Ping ZHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    139-149

    Relay, which promises to enhance the performance of future communication networks, is one of the most promising techniques for IMT-Advanced systems. In this paper, multiple-input multiple-output (MIMO) relay channels based on outdoor measurements are investigated. We focus on the link between the base station (BS) and the relay station (RS) as well as the link between the RS and the mobile station (MS). First of all, the channels were measured employing a real-time channel sounder in IMT-Advanced frequency band (2.35 GHz with 50 MHz bandwidth). Then, the parameters of multipath components (MPCs) are extracted utilizing space-alternating generalized expectation algorithm. MPC parameters of the two links are statistically analyzed and compared. The polarization and spatial statistics are gotten. The trends of power azimuth spectrum (PAS) and cross-polarization discrimination (XPD) with the separation between the RS and the MS are investigated. Based on the PAS, the propagation mechanisms of line-of-sight and non-line-of-sight scenarios are analyzed. Furthermore, an approximate closed-form expression of channel correlation is derived. The impacts of PAS and XPD on the channel correlation are studied. Finally, some guidelines for the antenna configurations of the BS, the RS and the MS are presented. The results reveal the different characteristics of relay channels and provide the basis for the practical deployment of relay systems.

  • Impact of the Primary User's Power Allocation on the Performance of the Secondary User in Cognitive Radio Networks

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:2
      Page(s):
    668-672

    In spectrum sharing cognitive radio (CR) networks, secondary user (SU) is allowed to share the same spectrum band concurrently with primary user (PU), with the condition that the SU causes no harmful interference to the PU. In this letter, the ergodic and outage capacity loss constraints are proposed to protect the PU according to its service types. We investigate the performance of the SU in terms of ergodic capacity under various power allocation policies of the PU. Specifically, three PU power allocation policies are considered, namely waterfilling, truncated channel inversion with fixed rate (TIFR) and constant power allocation. We obtain the ergodic capacities of the SU under the three PU power allocation policies. The numerical results show that the PU waterfilling and TIFR power allocation policies are superior to the PU constant power allocation in terms of the capacity of the PU. In particular, it is shown that, with respect to the ergodic capacity of the SU, the PU waterfilling power allocation is superior to the PU constant power allocation, while the PU TIFR power allocation is inferior to the PU constant power allocation.

  • Outage Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity and Outdated CSI under Asymmetric Fading

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:3
      Page(s):
    732-736

    Spectrum sharing cognitive radio (CR) with maximal ratio combining (MRC) diversity under asymmetric fading is studied. Specifically, the channel on the secondary transmitter (STx) to the secondary receiver (SRx) link is Nakagami-m distributed while the channel on the STx to the primary receiver (PRx) link is Rayleigh distributed, and the channel state information (CSI) on the STx-PRx link is assumed to be outdated due to feedback delay. The outage capacity of the secondary user (SU) is derived under the average interference and peak transmit power constraints. The results supported by simulations are presented and show the effects of various system parameters on the outage capacity. Particularly, it is shown that the outdated CSI has no impact on the outage capacities in the cases of low peak transmit power constraint and zero-outage probability. It is also shown that MRC diversity can significantly improve the outage capacity especially for the zero-outage capacity and the outage capacity under low outage probability.

  • A 7-Die 3D Stacked 3840×2160@120 fps Motion Estimation Processor

    Shuping ZHANG  Jinjia ZHOU  Dajiang ZHOU  Shinji KIMURA  Satoshi GOTO  

     
    PAPER

      Vol:
    E100-C No:3
      Page(s):
    223-231

    In this paper, a hamburger architecture with a 3D stacked reconfigurable memory is proposed for a 4K motion estimation (ME) processor. By positioning the memory dies on both the top and bottom sides of the processor die, the proposed hamburger architecture can reduce the usage of the signal through-silicon via (TSV), and balance the power delivery network and the clock tree of the entire system. It results in 1/3 reduction of the usage of signal TSVs. Moreover, a stacked reconfigurable memory architecture is proposed to reduce the fabrication complexity and further reduce the number of signal TSVs by more than 1/2. The reduction of signal TSVs in the entire design is 71.24%. Finally, we address unique issues that occur in electronic design automation (EDA) tools during 3D large-scale integration (LSI) designs. As a result, a 4K ME processor with 7-die stacking 3D system-on-chip design is implemented. The proposed design can support real time 3840 × 2160 @ 120 fps encoding at 130 MHz with less than 540 mW.

  • Impact of Randomized Cross-Polarization Discrimination on Channel Correlation Property of the 3GPP Spatial Channel Model

    Yu ZHANG  Jianhua ZHANG  Guangyi LIU  Ping ZHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:4
      Page(s):
    1300-1307

    The use of cross-polarized antennas for multiple-input multiple-output (MIMO) systems is receiving attention as they are able to double the number of antenna for half antenna spacing needs. This paper presents the channel correlation property of the 3rd Generation Partner Project (3GPP)/3GPP2 spatial channel model (SCM) with the polarization propagation. The statistical average of the per path polarization correlation given random cross-polarization discrimination (XPD) with co-located ideal tilted dipole antennas is derived. The impact on the random behavior of the polarization correlation due to the slant offset angle, the per path angular spread (AS), and the random XPD is analyzed. The simulation results show that the variation of polarization correlation caused by the random XPD is maximized with a 58 slant offset angle under the assumptions of all predefined scenarios in SCM. The per path AS has minor impact on the statistics of the polarization correlations. The randomness of polarization correlation is negligible for an XPD with small standard deviation.

  • Performance Analysis of Semi-Blind Amplify-and-Forward Relay System in Mixed Nakagami-m and Rician Fading Channels

    Wei XU  Jianhua ZHANG  Yi LIU  Ping ZHANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:11
      Page(s):
    3137-3140

    Performance analysis of a dual-hop semi-blind amplify-and-forward (AF) relay system in mixed Nakagami-m and Rician fading channels, is proposed. We derived the closed-form expression for the cumulative distribution function (CDF) of the equivalent end-to-end signal to noise ratio (SNR), based on which the exact outage probability and symbol error probability (SEP) are investigated. The theoretical analysis is validated by Monte Carlo simulation results.

  • A Wavelets Network Interpolation Algorithm for OFDM Channel Estimation Systems

    Haiyuan LIU  Taiyi ZHANG  Ruiping ZHANG  Feng LIU  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    520-525

    For the performance deficiency of the pilot symbol aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems, the wavelets network interpolation channel estimator is proposed. By contrast with conventional methods, wavelets network interpolation channel estimator can guarantee the high transmission rate and lower Bit error rates (BER). Computer simulation results demonstrate that the proposed channel estimation method exhibit an improved performance compared to the conventional linear channel estimation methods and is robust to fading rate, especially in fast fading channels.

  • Effects of the Temporal Fine Structure in Different Frequency Bands on Mandarin Tone Perception

    Lin YANG  Jianping ZHANG  Jian SHAO  Yonghong YAN  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:2
      Page(s):
    371-374

    This letter evaluates the relative contributions of temporal fine structure cues in various frequency bands to Mandarin tone perception using novel "auditory chimaeras". Our results confirm the importance of temporal fine structure cues to lexical tone perception and the dominant region of lexical tone perception is found, namely the second to fifth harmonics can contribute no less than the fundamental frequency itself.

  • Unitary Space Vector Quantization Codebook Design for Precoding MIMO System

    Ping WU  Lihua LI  Ping ZHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:9
      Page(s):
    2917-2924

    In a codebook based precoding MIMO system, the precoding codebook significantly determines the system performance. Consequently, it is crucial to design the precoding codebook, which is related to the channel fading, antenna number, spatial correlation etc. So specific channel conditions correspond to respective optimum codebooks. In this paper, in order to obtain the optimum codebooks, a universal unitary space vector quantization (USVQ) codebook design criterion is provided, which can design the optimum codebooks for various fading and spatial correlated channels with arbitrary antenna configurations. Furthermore, the unitary space K-mean (USK) algorithm is also proposed to generate the USVQ codebook, which is iterative and convergent. Simulations show that the capacities of the precoding MIMO schemes using the USVQ codebooks are very close to those of the ideal precoding cases and outperform those of the schemes using the traditional Grassmannian codebooks and the 3GPP LTE DFT (discrete Fourier transform) codebooks.

  • Antenna and Node Selection for Multi-Antenna Relay Networks in Correlated Channels

    Jing HUANG  Ying WANG  Tong WU  Gen LI  Ping ZHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:3
      Page(s):
    629-639

    In this paper, we investigate the antenna and node selection issues for amplify-and-forward (AF) and decode-and-forward (DF) multi-antenna relay networks in correlated channels. Based on the channel statistics, optimal selection criteria for antenna and relay node are derived jointly, aiming to maximize the ergodic capacity. Instantaneous channel knowledge-based selection schemes, motivated by traditional antenna selection algorithms, are investigated as well. It is shown that the proposed node selection schemes derived from antenna selection on relay nodes are feasible and effective in relay systems. Statistical selection shows considerable capacity gain compared to full complexity scheme and random selection strategy in AF mode, while instantaneous selection performs better in DF relaying. Furthermore, the proposed schemes are shown to be robust to channel estimation errors due to their correlation-oriented nature.

  • Studies of an On-Package Dual-Mode Square-Loop Band Pass Filter for Highly Integrated Wireless Transceivers Using NU-FDTD

    Ming-Sze TONG  Yue-Ping ZHANG  Yilong LU  Yinchao CHEN  Hyeong-Seok KIM  

     
    LETTER-Resonators & Filters

      Vol:
    E88-C No:7
      Page(s):
    1448-1450

    An on-package dual-mode square-loop band pass filter is studied by applying a non-uniform finite difference time domain (NU-FDTD) method. The filter is integrated on a package containing a transceiver, and it is designed to operate in dual-modes, i.e., and , to ensure a good electric performance around the center frequency at 5.25 GHz, which is commonly allocated in wireless local area network (WLAN). This filter is also referred as a dual-mode integrated-circuit package filter (DM-ICPF) based on its operational mode and integration onto an IC-package. The frequency characteristics in terms of the scattering parameters are studied, and the results are validated against the computed results using commercial software, the high frequency structure simulator (HFSS). Results show an excellent agreement between the numerical data, and the proposed DM-ICPF structure can be applied in the area of the highly integrated wireless transceivers.

1-20hit(39hit)