The search functionality is under construction.

Keyword Search Result

[Keyword] partial response(14hit)

1-14hit
  • Multi-Track Joint Decoding Schemes Using Two-Dimensional Run-Length Limited Codes for Bit-Patterned Media Magnetic Recording

    Hidetoshi SAITO  

     
    PAPER-Signal Processing for Storage

      Vol:
    E99-A No:12
      Page(s):
    2248-2255

    This paper proposes an effective signal processing scheme using a modulation code with two-dimensional (2D) run-length limited (RLL) constraints for bit-patterned media magnetic recording (BPMR). This 2D signal processing scheme is applied to be one of two-dimensional magnetic recording (TDMR) schemes for shingled magnetic recording on bit patterned media (BPM). A TDMR scheme has been pointed out an important key technology for increasing areal density toward 10Tb/in2. From the viewpoint of 2D signal processing for TDMR, multi-track joint decoding scheme is desirable to increase an effective transfer rate because this scheme gets readback signals from several adjacent parallel tracks and detect recorded data written in these tracks simultaneously. Actually, the proposed signal processing scheme for BPMR gets mixed readback signal sequences from the parallel tracks using a single reading head and these readback signal sequences are equalized to a frequency response given by a desired 2D generalized partial response system. In the decoding process, it leads to an increase in the effective transfer rate by using a single maximum likelihood (ML) sequence detector because the recorded data on the parallel tracks are decoded for each time slot. Furthermore, a new joint pattern-dependent noise-predictive (PDNP) sequence detection scheme is investigated for multi-track recording with media noise. This joint PDNP detection is embed in a ML detector and can be useful to eliminate media noise. Using computer simulation, it is shown that the joint PDNP detection scheme is able to compensate media noise in the equalizer output which is correlated and data-dependent.

  • A Study on Signal Processing for Barium Ferrite Particulate Tape Systems

    Atsushi MUSHA  Osamu SHIMIZU  

     
    PAPER

      Vol:
    E96-C No:12
      Page(s):
    1474-1478

    The optimum generalized partial response (GPR) target for barium ferrite (BaFe) tape systems was studied. The shift in perpendicular magnetic recording technology in HDDs to systems employing single-pole-type (SPT) recording heads and media with a soft under layer (SUL) has been accompanied by a change in the read channel design, whereas current magnetic tape recording systems utilize a combination of a ring-type recording head with a single magnetic layer structured medium. Therefore, the read channel performance of current oriented BaFe particulate tape systems needs to be studied to best exploit the potential of this medium. Toward this end, DC-free, DC-full, and DC-suppressed targets were compared. The results show that assuming a GPRML detector with 16 or more states, a traditional DC-free target exhibits the best bit error rate performance for both longitudinally and perpendicularly oriented BaFe media, suggesting that the current read channel designed for longitudinally oriented media can also be utilized for BaFe particulate tape systems.

  • Transmission Line Coupler Design and Mixer-Based Receiver for Dicode Partial Response Communications

    Tsutomu TAKEYA  Tadahiro KURODA  

     
    PAPER-Circuit Theory

      Vol:
    E96-A No:5
      Page(s):
    940-946

    This paper presents a method of designing transmission line couplers (TLCs) and a mixer-based receiver for dicode partial response communications. The channel design method results in the optimum TLC design. The receiver with mixers and DC balancing circuits reduces the threshold control circuits and digital circuits to decode dicode partial response signals. Our techniques enable low inter-symbol interference (ISI) dicode partial response communications without three level decision circuits and complex threshold control circuits. The techniques were evaluated in a simulation with an EM solver and a transistor level simulation. The circuit was designed in the 90-nm CMOS process. The simulation results show 12-Gb/s operation and 52mW power consumption at 1.2V.

  • A Duobinary Signaling for Asymmetric Multi-Chip Communication

    Koichi YAMAGUCHI  Masayuki MIZUNO  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    619-626

    Duobinary signaling has been introduced into asymmetric multi-chip communications such as DRAM or display interfaces, which allows a controlled amount of ISI to reduce signaling bandwidth by 2/3. A × 2 oversampled equalization has been developed to realize Duobinary signaling. Symbol-rate clock recovery form Duobinary signal has been developed to reduce power consumption for receivers. A Duobinary transmitter test chip was fabricated with 90-nm CMOS process. A 3.5 dB increase in eye height and a 1.5 times increase in eye width was observed.

  • Dicode Partial Response Signaling over Inductively-Coupled Channel

    Koichi YAMAGUCHI  Masayuki MIZUNO  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    613-618

    Dicode partial response signaling system over inductively-coupled channel has been developed to achieve higher data rate than self-resonant frequencies of inductors. The developed system operates at five times higher data rates than conventional systems with the same inductor. A current-mode equalization in the transmitter designed in a 90-nm CMOS successfully reshapes waveforms to obtain dicode signals at the receiver. For a 5-Gb/s signaling through the coupled inductors with a 120-µm diameter and a 120-µm distance, 20-mV eye opening was observed. The power consumption value of the transmitter was 58 mW at the 5-Gb/s operation.

  • Frequency-Domain Partial Response Coding for Alamouti SFBC-OFDM System in Doubly Selective Channels

    Jung Min CHOI  Jae Hong LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2298-2302

    Time variation within an OFDM symbol causes inter-carrier interference (ICI). In this letter, frequency-domain partial response coding (PRC) is investigated to reduce ICI in the Alamouti SFBC-OFDM system. Based on the expression of the ICI power in the SFBC-OFDM system with PRC, the near-optimal weights of PRC are derived. Simulation results show that the PRC scheme can reduce ICI effectively.

  • TMTR Codes for Partial Response Channels

    Hui-Feng TSAI  Pi-Hai LIU  Yinyi LIN  

     
    LETTER-Storage Technology

      Vol:
    E88-C No:9
      Page(s):
    1903-1908

    A TMTR code is specified as (=2,=3,k) constraint. In this work, an approach for constructing (=2,=3,k) codes is presented. Based on this construction, a rate 8/9 code with k=7 is found. This code can achieve better timing recovery performance compared to the proposed previously TMTR code with k=11. An enumerating encoder and decoder exist for constructed (=2,=3,k) codes. A look-up table for the encoder/decoder is not required. Simulation results on an E2PRIV recording channel reveal that the TMTR code provides 2.2 dB gain over an uncoded case.

  • A Study on (1,7) Coded PRML Systems Using a Double Clock Weighted Viterbi Decoding for Optical Disc Recorder

    Satoshi ITOI  

     
    PAPER-Storage Technology

      Vol:
    E83-C No:4
      Page(s):
    652-658

    Bit error rates (BER) for playback of (1,7) code employed in optical disc recording were simulated using an ideal (Gaussian) playback waveform, with playback being performed by PRML (Partial Response Maximum-Likelihood) combining a partial response equalizer and a double clock weighted Viterbi decoder. It was found that best BER occurs for PR(2,3,3,2) +7/10 level Viterbi decoding at a weighted value of w = 0.5 for data consisting of 107 symbols. For a minimum bit length of 0.28 µm, BER of 10-4 and less than 10-6 was obtained for SN ratios of 15.6 dB and 17.7 dB, respectively. And for a minimum bit length of 0.26 µm, BER of 10-4 and less than 10-6 was obtained for SN ratios of 16.7 dB and 18.8 dB, respectively. These results demonstrate the feasibility of a minimum bit length of 0.26 µm in current optical disc recorders.

  • Error Rate Performance of Turbo Coded Partial Response Systems for Digital Magnetic Recording Channels

    Hidetoshi SAITO  Masaichi TAKAI  Yoshihiro OKAMOTO  Hisashi OSAWA  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2218-2226

    In various digital wireless communication systems, it is known that turbo coding provides an error rate performance within a few tenths of a dB of the theoretical Shannon limit. The error correcting capability of turbo coding is attractive for a recording code in a digital magnetic recording system. The performance of a partial response maximum-likelihood (PRML) system with any recording code is degraded by many undesirable factors such as linear and nonlinear distortions. For improving the performance of the PRML system, it is useful to adopt a high-order PRML system or high rate code in general. In this paper, the two-track recording system using turbo coding which can increase the coding rate over 1 and improve the performance is proposed. Turbo-coding provides a near-ML performance by the suboptimum symbol-by-symbol maximum a posteriori probability (MAP) decoding algorithm. Our proposed turbo-coded class 4 partial response (PR4) systems use the rate 4/6, 8/10 and 16/18 turbo codes for high-density two-track digital magnetic recording. The error rate performance is obtained by computer simulation, taking account of the partial erasure which is a prominent nonlinear distortion in high-density recording. As a result, the proposed systems are hardly affected by partial erasure and maintains good performance compared with the conventional NRZ coded PR4ML system.

  • Performance Analysis of Trellis-Coded Partial Response CPM over Rician Fast Fading Channels

    Yoshikatsu AKITA  Koji SHIBATA  Takakazu SAKAI  Atsushi NAKAGAKI  

     
    LETTER-Communication Systems

      Vol:
    E82-A No:10
      Page(s):
    2204-2207

    This paper shows the method of theoretical analysis for the bit error probability of the trellis-coded partial response continuous phase modulation (TCM-PR-CPM) over the correlated Rician fast frequency nonselective fading channel. In the analysis, the fading correlation of the channel and the effect due to finite interleaver are taken into account. By applying the method to the rate 1/2 (7, 2) trellis code with the raised cosine pulse of length 2 (2RC) partial response signaling, we show that the tighter upper bounds of the bit error rate are obtained than those in the preceding report.

  • Performance Analysis of Modified/Quadrature Partial Response-Trellis Coded Modulation (M/QPR-TCM) Systems

    Osman Nuri UCAN  

     
    PAPER-Mobile Communication

      Vol:
    E79-B No:10
      Page(s):
    1570-1576

    In this paper partial response signalling and trellis coded modulation are considered together to improve bandwidth efficiency and error performance for M-QAM and denoted as Modified/Quadrature Partial Response-Trellis Coded Modulation (M/QPR-TCM) and two new non-catastrophic schemes M/6QPR-TCM and M/9QPR-TCM are introduced for 4QAM. In colored noise with correlation coefficient less than zero, the proposed schemes perform better than in AWGN case. Another interesting result is that when the combined system is used on a Rician fading channel, the bit error probability upper bounds of the proposed systems are better than their counterparts the 4QAM-TCM systems with 2 and 4 states, respectively, for SNR values greater than a threshold, which have the best error performance in the literature.

  • Future Technology Trends on Magneto-Optical Recording

    Fumio KUGIYA  Takeshi MAEDA  Masahiko TAKAHASHI  

     
    INVITED PAPER

      Vol:
    E78-C No:11
      Page(s):
    1499-1508

    Computer circumstance have changed drastically, and larger capacity removable media is indispensable. Magneto-optical disk is promising candidate to satisfy computer user's needs. In this report, future perspective of high density magneto-optical recording technology is investigated.

  • Trial for Deep Submicron Track Width Recording

    Hiroaki MURAOKA  Yoshihisa NAKAMURA  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1517-1522

    Extremely narrow track width of deep submicron range is examined in perpendicular magnetic recording. Head field distribution of a single-pole head analyzed by 3-dimensional computer simulation results in a sharp gradient, but relatively large cross-sectional area is required to maintain head field strength. Based on this design concept, a lateral single-pole head is described and proved to attain track width of 0.4 µm. In addition, multilevel partial response appropriate to the new multitrack recording system is proposed.

  • Simplification of Viterbi Algorithm for (1, 7) RLL Code

    Yoshitake KURIHARA  Hisashi OSAWA  Yoshihiro OKAMOTO  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1567-1574

    Simplification of the Viterbi algorithm and the error rate performance are presented for a partial response maximum-likelihood (PRML) system employing the PR(1, 1) system as a PR system for (1, 7) run-length limited (RLL) code. The minimum run-length of 1's or O's in the output sequence of the precoder for (1, 7) RLL code is limited to 2. Two kinds of simplified Viterbi algorithms using this run-length constraint are proposed. One algorithm requires the path memory length of only two in the Viterbi detector. The Viterbi detector based on the other algorithm is equivalent to the simple PR(1, 1) system followed by a threshold detector. The bit-error rates of PRML systems with Viterbi detectors based on these algorithms are obtained by computer simulation and their performance is compared with that of conventional PRML systems for (1, 7) RLL code. It is shown that the proposed PRML system exhibits better performance than conventional PRML systems at high recording density.