The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] partition(196hit)

61-80hit(196hit)

  • Memory-Access-Driven Context Partitioning for Window-Based Image Processing on Heterogeneous Multicore Processors

    Hasitha Muthumala WAIDYASOORIYA  Yosuke OHBAYASHI  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-Design Methodology

      Vol:
    E95-D No:2
      Page(s):
    354-363

    Accelerator cores in low-power heterogeneous processors have on-chip local memories to enable parallel data access. The memory capacities of the local memories are very small. Therefore, the data should be transferred from the global memory to the local memories many times. These data transfers greatly increase the total processing time. Memory allocation technique to increase the data sharing is a good solution to this problem. However, when using reconfigurable cores, the data must be shared among multiple contexts. However, conventional context partitioning methods only consider how to reuse limited hardware resources in different time slots. They do not consider the data sharing. This paper proposes a context partitioning method to share both the hardware resources and the local memory data. According to the experimental results, the proposed method reduces the processing time by more than 87% compared to conventional context partitioning techniques.

  • Optimal Buffer Partitioning on a Multiuser Wireless Link

    Omur OZEL  Elif UYSAL-BIYIKOGLU  Tolga GIRICI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E94-B No:12
      Page(s):
    3399-3411

    A finite buffer shared by multiple packet queues is considered. Partitioning the buffer to maximize total throughput is formulated as a resource allocation problem, the solution is shown to be achieved by a greedy incremental algorithm in polynomial time. The optimal buffer allocation strategy is applied to different models for a wireless downlink. First, a set of parallel M/M/1/mi queues, corresponding to a downlink with orthogonal channels is considered. It is verified that at high load, optimal buffer partitioning can boost the throughput significantly with respect to complete sharing of the buffer. Next, the problem of optimal combined buffer allocation and channel assignment problems are shown to be separable in an outage scenario. Motivated by this observation, buffer allocation is considered in a system where users need to be multiplexed and scheduled based on channel state. It is observed that under finite buffers in the high load regime, scheduling simply with respect to channel state with a simply partitioned buffer achieves comparable throughput to combined channel and queue-aware scheduling.

  • A Scalable and Reconfigurable Fault-Tolerant Distributed Routing Algorithm for NoCs

    Zewen SHI  Xiaoyang ZENG  Zhiyi YU  

     
    PAPER-Computer System

      Vol:
    E94-D No:7
      Page(s):
    1386-1397

    Manufacturing defects in the deep sub-micron VLSI process and aging resulted problems of devices during lifecycle are inevitable, and fault-tolerant routing algorithms are important to provide the required communication for NoCs in spite of failures. The proposed algorithm, referred to as scalable and reconfigurable fault-tolerant distributed routing (RFDR), partitions the system into nine regions using the concept of divide-and-conquer. It is a distributed algorithm, and each router guarantees fault-tolerance within one's own region and the system can be still sustained with multiple fault areas. The proposed RFDR has excellent scalability with hardware cost keeping constant independent of system size. Also it is completely reconfigurable when new nodes fail. Simulations under various synthetic traffic patterns show its better performance compared to Extended-XY routing algorithm. Moreover, there is almost no hardware overhead compared to Logic-Based Distributed Routing (LBDR), but the fault-tolerance capacity is enhanced in the proposed algorithm. Hardware cost is reduced 37% compared to Reconfigurable Distributed Scalable Predictable Interconnect Network (R-DSPIN) which only supports single fault region.

  • On Partitioning Colored Points

    Takahisa TODA  

     
    PAPER

      Vol:
    E94-A No:6
      Page(s):
    1242-1246

    P. Kirchberger proved that, for a finite subset X of Rd such that each point in X is painted with one of two colors, if every d+2 or fewer points in X can be separated along the colors, then all the points in X can be separated along the colors. In this paper, we show a more colorful theorem.

  • An Association Rule Based Grid Resource Discovery Method

    Yuan LIN  Siwei LUO  Guohao LU  Zhe WANG  

     
    LETTER-Computer System

      Vol:
    E94-D No:4
      Page(s):
    913-916

    There are a great amount of various resources described in many different ways for service oriented grid environment, while traditional grid resource discovery methods could not fit more complex future grid system. Therefore, this paper proposes a novel grid resource discovery method based on association rule hypergraph partitioning algorithm which analyzes user behavior in history transaction records to provide personality service for user. And this resource discovery method gives a new way to improve resource retrieval and management in grid research.

  • A Domain Partition Model Approach to the Online Fault Recovery of FPGA-Based Reconfigurable Systems

    Lihong SHANG  Mi ZHOU  Yu HU  Erfu YANG  

     
    PAPER-Nonlinear Problems

      Vol:
    E94-A No:1
      Page(s):
    290-299

    Field programmable gate arrays (FPGAs) are widely used in reliability-critical systems due to their reconfiguration ability. However, with the shrinking device feature size and increasing die area, nowadays FPGAs can be deeply affected by the errors induced by electromigration and radiation. To improve the reliability of FPGA-based reconfigurable systems, a permanent fault recovery approach using a domain partition model is proposed in this paper. In the proposed approach, the fault-tolerant FPGA recovery from faults is realized by reloading a proper configuration from a pool of multiple alternative configurations with overlaps. The overlaps are presented as a set of vectors in the domain partition model. To enhance the reliability, a technical procedure is also presented in which the set of vectors are heuristically filtered so that the corresponding small overlaps can be merged into big ones. Experimental results are provided to demonstrate the effectiveness of the proposed approach through applying it to several benchmark circuits. Compared with previous approaches, the proposed approach increased MTTF by up to 18.87%.

  • Parallelization of Computing-Intensive Tasks of the H.264 High Profile Decoding Algorithm on a Reconfigurable Multimedia System

    Tongsheng GENG  Leibo LIU  Shouyi YIN  Min ZHU  Shaojun WEI  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3223-3231

    This paper proposes approaches to perform HW/SW (Hardware/Software) partition and parallelization of computing-intensive tasks of the H.264 HiP (High Profile) decoding algorithm on an embedded coarse-grained reconfigurable multimedia system, called REMUS (REconfigurable MUltimedia System). Several techniques, such as MB (Macro-Block) based parallelization, unfixed sub-block operation etc., are utilized to speed up the decoding process, satisfying the requirements of real-time and high quality H.264 applications. Tests show that the execution performance of MC (Motion Compensation), deblocking, and IDCT-IQ (Inverse Discrete Cosine Transform-Inverse Quantization) on REMUS is improved by 60%, 73%, 88.5% in the typical case and 60%, 69%, 88.5% in the worst case, respectively compared with that on XPP PACT (a commercial reconfigurable processor). Compared with ASIC solutions, the performance of MC is improved by 70%, 74% in the typical and in the worst case, respectively, while those of Deblocking remain the same. As for IDCT_IQ, the performance is improved by 17% no matter in the typical or worst case. Relying on the proposed techniques, 1080p@30 fps of H.264 HiP@ Level 4 decoding could be achieved on REMUS when utilizing a 200 MHz working frequency.

  • Exploring Web Partition in DHT-Based Distributed Web Crawling

    Xiao XU  Weizhe ZHANG  Hongli ZHANG  Binxing FANG  

     
    PAPER

      Vol:
    E93-D No:11
      Page(s):
    2907-2921

    The basic requirements of the distributed Web crawling systems are: short download time, low communication overhead and balanced load which largely depends on the systems' Web partition strategies. In this paper, we propose a DHT-based distributed Web crawling system and several DHT-based Web partition methods. First, a new system model based on a DHT method called the Content Addressable Network (CAN) is proposed. Second, based on this model, a network-distance-based Web partition is implemented to reduce the crawler-crawlee network distance in a fully distributed manner. Third, by utilizing the locality on the link space, we propose the concept of link-based Web partition to reduce the communication overhead of the system. This method not only reduces the number of inter-links to be exchanged among the crawlers but also reduces the cost of routing on the DHT overlay. In order to combine the benefits of the above two Web partition methods, we then propose 2 distributed multi-objective Web partition methods. Finally, all the methods we propose in this paper are compared with existing system models in the simulated experiments under different datasets and different system scales. In most cases, the new methods show their superiority.

  • Unconditionally Secure Oblivious Transfer from Algebraic Signaling over the Gaussian Channel

    Motohiko ISAKA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:11
      Page(s):
    2017-2025

    We study the use of the additive white Gaussian noise channel to achieve a cryptographic primitive that is important in secure multiparty computation. A protocol for unconditionally secure oblivious transfer is presented. We show that channel input alphabets with a certain algebraic structure and their partitions are useful in achieving the requirements on the primitive. Signal design for a protocol with high information rate is discussed.

  • Multilevel Concatenated Space-Time Block Codes

    Shang-Chih MA  

     
    LETTER-Coding Theory

      Vol:
    E93-A No:10
      Page(s):
    1845-1847

    An alternative design for constructing multilevel space-time codes is proposed. For a given space-time block code, we combine several component codes in conjunction with set partitioning of the expanded signal constellation according to the coding gain distance criterion. The error performance of an example code is compared with a traditional multilevel space-time code in computer simulation.

  • Design of Hierarchical Fuzzy Classification System Based on Statistical Characteristics of Data

    Chang Sik SON  Yoon-Nyun KIM  Kyung-Ri PARK  Hee-Joon PARK  

     
    LETTER-Pattern Recognition

      Vol:
    E93-D No:8
      Page(s):
    2319-2323

    A scheme for designing a hierarchical fuzzy classification system with a different number of fuzzy partitions based on statistical characteristics of the data is proposed. To minimize the number of misclassified patterns in intermediate layers, a method of fuzzy partitioning from the defuzzified outputs of previous layers is also presented. The effectiveness of the proposed scheme is demonstrated by comparing the results from five datasets in the UCI Machine Learning Repository.

  • Moving Picture Coding by Lapped Transform and Edge Adaptive Deblocking Filter with Zero Pruning SPIHT

    Nasharuddin ZAINAL  Toshihisa TANAKA  Yukihiko YAMASHITA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:6
      Page(s):
    1608-1617

    We propose a moving picture coding by lapped transform and an edge adaptive deblocking filter to reduce the blocking distortion. We apply subband coding (SBC) with lapped transform (LT) and zero pruning set partitioning in hierarchical trees (zpSPIHT) to encode the difference picture. Effective coding using zpSPIHT was achieved by quantizing and pruning the quantized zeros. The blocking distortion caused by block motion compensated prediction is reduced by an edge adaptive deblocking filter. Since the original edges can be detected precisely at the reference picture, an edge adaptive deblocking filter on the predicted picture is very effective. Experimental results show that blocking distortion has been visually reduced at very low bit rate coding and better PSNRs of about 1.0 dB was achieved.

  • Computer Algebra System as Test Generation System

    Satoshi HATTORI  

     
    PAPER-Software Testing

      Vol:
    E93-D No:5
      Page(s):
    1006-1017

    We try to use a computer algebra system Mathematica as a test case generation system. In test case generation, we generally need to solve equations and inequalities. The main reason why we take Mathematica is because it has a built-in function to solve equations and inequalities. In this paper, we deal with both black-box testing and white-box testing. First, we show two black-box test case generation procedures described in Mathematica. The first one is based on equivalence partitioning. Mathematica explicitly shows a case that test cases do no exist. This is an advantage in using Mathematica. The second procedure is a modification of the first one adopting boundary value analysis. For implementation of boundary value analysis, we give a formalization for it. Next, we show a white-box test case generation procedure. For this purpose, we also give a model for source programs. It is like a control flow graph model. The proposed procedure analyzes a model description of a program.

  • A Fast IP Address Lookup Algorithm Based on Search Space Reduction

    Hyuntae PARK  Hyunjin KIM  Hong-Sik KIM  Sungho KANG  

     
    LETTER-Switching for Communications

      Vol:
    E93-B No:4
      Page(s):
    1009-1012

    This letter proposes a fast IP address lookup algorithm based on search space reduction. Prefixes are classified into three types according to the nesting relationship and a large forwarding table is partitioned into multiple small trees. As a result, the search space is reduced. The results of analyses and experiments show that the proposed method offers higher lookup and updating speeds along with reduced memory requirements.

  • A Fast and Memory Efficient SPIHT Image Encoder

    Zhong-Ho CHEN  Alvin W. Y. SU  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:3
      Page(s):
    602-610

    Set-partitioning in hierarchical trees (SPIHT) is one of the well-known image compression schemes. SPIHT offers an agreeable compression ratio and produces an embedded bit-stream for progressive transmission. However, the major disadvantage of SPIHT is its large memory requirement. In this paper, we propose a memory efficient SPIHT image coder and its parallel implantation. The memory requirement is reduced without sacrificing image quality. All bit-planes are concurrently encoded in order to speed up the entire coding flow. The result shows that the proposed algorithm is roughly 6 times faster than the original SPIHT. For a 512512 image, the memory requirement is reduced from 5.83 Mb to 491 Kb. The proposed algorithm is also realized on FPGA. With pipeline design, the circuit can run at 110 MHz, which can encode a 512512 image in 1.438 ms. Thus, the circuit achieves very high throughput, 182 MPixels/sec, and can be applied to high performance image compression applications.

  • Inapproximability of the Minimum Biclique Edge Partition Problem

    Hideaki OTSUKI  Tomio HIRATA  

     
    LETTER

      Vol:
    E93-D No:2
      Page(s):
    290-292

    For a graph G, a biclique edge partition SBP(G) is a collection of bicliques (complete bipartite subgraphs) Bi such that each edge of G is contained in exactly one Bi. The Minimum Biclique Edge Partition Problem (MBEPP) asks for SBP(G) with the minimum size. In this paper, we show that for arbitrary small ε>0, (6053/6052-ε)-approximation of MBEPP is NP-hard.

  • Partitioning of Behavioral Descriptions with Exploiting Function-Level Parallelism

    Yuko HARA  Hiroyuki TOMIYAMA  Shinya HONDA  Hiroaki TAKADA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:2
      Page(s):
    488-499

    A novel method to efficiently synthesize hardware from a large behavioral description in behavioral synthesis is proposed. For a program with functions executable in parallel, this proposed method determines a behavioral partitioning which simultaneously minimizes the overall datapath area and the complexity of the controller while maximizing performance of a synthesized circuit by fully exploiting function-level parallelism of a behavioral description. This method is formulated as an integer programming problem. Experimental results demonstrate that this method leads to a shift of the explorable design space so that superior solutions which could not be explored by earlier work are included, showing the effectiveness of our proposed method.

  • Power Minimization for Dual- and Triple-Supply Digital Circuits via Integer Linear Programming

    Ki-Yong AHN  Chong-Min KYUNG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:9
      Page(s):
    2318-2325

    This paper proposes an Integer Linear Programming (ILP)-based power minimization method by partitioning into regions, first, with three different VDD's(PM3V), and, secondly, with two different VDD's(PM2V). To reduce the solving time of triple-VDD case (PM3V), we also proposed a partitioned ILP method(p-PM3V). The proposed method provides 29% power saving on the average in the case of triple-VDD compared to the case of single VDD. Power reduction of PM3V compared to Clustered Voltage Scaling (CVS) was about 18%. Compared to the unpartitioned ILP formulation(PM3V), the partitioned ILP method(p-PM3V) reduced the total solution time by 46% at the cost of additional power consumption within 1.3%.

  • Pipeline-Based Partition Exploration for Heterogeneous Multiprocessor Synthesis

    Kang ZHAO  Jinian BIAN  Sheqin DONG  Yang SONG  Satoshi GOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:9
      Page(s):
    2283-2294

    To achieve an automated implementation for the application-specific heterogeneous multiprocessor systems-on-chip (MPSoC), partitioning and mapping the sequential programs onto multiple parallel processors is one of the most difficult challenges. However, the existing traditional parallelizing techniques cannot solve the MPSoC-related problems effectively, so designers are still required to manually extract the concurrency potentials in the program. To solve this bottleneck, an automated application partition technique is needed. However, completely automatic parallelism is ineffective, so it is promising to explore concurrency for certain practical special structures. To settle those issues, this paper proposes a template-based algorithm to automatically partition a special load-compute-store (LCS) loop structure. Since specific-instruction customization for the application specific instruction-set processors (ASIPs) has interactions with task partitioning, the proposed algorithm integrates the dynamic pipelining and ASIP techniques using an iterative improvement strategy: first, an initial pipelining scheme is generated to obtain the maximum parallelism; second, under the primary partition results specific instructions are customized respectively for each subprogram; third, the program is repartitioned via pipelining under the specific instruction configurations. The proposed method has been implemented in the context of a commercial extensible multiprocessor design flow, using the Xtensa-based XTMP platform from Tensilica Inc. Based on a case study of Fast Fourier Transform (FFT), the experimental results indicate that the partitioned programs by the proposed method demonstrate an average speedup of 10 compared to the original sequential programs which have not been partitioned and run on the uniprocessor system.

  • Segmenting Shape Using Deformation Information

    Ruiqi GUO  Shinichiro OMACHI  Hirotomo ASO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:6
      Page(s):
    1296-1303

    To segment a shape into parts is an important problem in shape representation and analysis. We propose in this paper a novel framework of shape segmentation using deformation models learned from multiple shapes. The deformation model from the target image to every other image is then estimated. Finally, normalized-cut graph partition is applied to the graph constructed based on the similarity of local patches in the target image, and a segmentation of the shape is carried out. Experimental results for images from MPEG7 shape database show the effectiveness of the proposed method.

61-80hit(196hit)