The search functionality is under construction.

Keyword Search Result

[Keyword] pencil-and-paper puzzle(2hit)

1-2hit
  • NP-Completeness of Fill-a-Pix and ΣP2-Completeness of Its Fewest Clues Problem

    Yuta HIGUCHI  Kei KIMURA  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E102-A No:11
      Page(s):
    1490-1496

    Fill-a-Pix is a pencil-and-paper puzzle, which is popular worldwide since announced by Conceptis in 2003. It provides a rectangular grid of squares that must be filled in to create a picture. Precisely, we are given a rectangular grid of squares some of which has an integer from 0 to 9 in it, and our task is to paint some squares black so that every square with an integer has the same number of painted squares around it including the square itself. Despite its popularity, computational complexity of Fill-a-Pix has not been known. We in this paper show that the puzzle is NP-complete, ASP-complete, and #P-complete via a parsimonious reduction from the Boolean satisfiability problem. We also consider the fewest clues problem of Fill-a-Pix, where the fewest clues problem is recently introduced by Demaine et al. for analyzing computational complexity of designing “good” puzzles. We show that the fewest clues problem of Fill-a-Pix is Σ2P-complete.

  • Computational Complexity and an Integer Programming Model of Shakashaka

    Erik D. DEMAINE  Yoshio OKAMOTO  Ryuhei UEHARA  Yushi UNO  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1213-1219

    Shakashaka is a pencil-and-paper puzzle proposed by Guten and popularized by the Japanese publisher Nikoli (like Sudoku). We determine the computational complexity by proving that Shakashaka is NP-complete, and furthermore that counting the number of solutions is #P-complete. Next we formulate Shakashaka as an integer-programming (IP) problem, and show that an IP solver can solve every instance from Nikoli's website within a second.