The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] phase change memory(5hit)

1-5hit
  • Faster SET Operation in Phase Change Memory with Initialization Open Access

    Yuchan WANG  Suzhen YUAN  Wenxia ZHANG  Yuhan WANG  

     
    PAPER-Electronic Materials

      Pubricized:
    2021/04/14
      Vol:
    E104-C No:11
      Page(s):
    651-655

    In conclusion, an initialization method has been introduced and studied to improve the SET speed in PCM. Before experiment verification, a two-dimensional finite analysis is used, and the results illustrate the proposed method is feasible to improve SET speed. Next, the R-I performances of the discrete PCM device and the resistance distributions of a 64 M bits PCM test chip with and without the initialization have been studied and analyzed, which confirms that the writing speed has been greatly improved. At the same time, the resistance distribution for the repeated initialization operations suggest that a large number of PCM cells have been successfully changed to be in an intermediate state, which is thought that only a shorter current pulse can make the cells SET successfully in this case. Compared the transmission electron microscope (TEM) images before and after initialization, it is found that there are some small grains appeared after initialization, which indicates that the nucleation process of GST has been carried out, and only needs to provide energy for grain growth later.

  • ARW: Efficient Replacement Policies for Phase Change Memory and NAND Flash

    Xi ZHANG  Xinning DUAN  Jincui YANG  Jingyuan WANG  

     
    PAPER-Computer System

      Pubricized:
    2016/10/13
      Vol:
    E100-D No:1
      Page(s):
    79-90

    The write operations on emerging Non-Volatile Memory (NVM), such as NAND Flash and Phase Change Memory (PCM), usually incur high access latency, and are required to be optimized. In this paper, we propose Asymmetric Read-Write (ARW) policies to minimize the write traffic sent to NVM. ARW policies exploit the asymmetry costs of read and write operations, and make adjustments on the insertion policy and hit-promotion policy of the replacement algorithm. ARW can reduce the write traffic to NVM by preventing dirty data blocks from frequent evictions. We evaluate ARW policies on systems with PCM as main memory and NAND Flash as disk. Simulation results on an 8-core multicore show that ARW adopted on the last-level cache (LLC) can reduce write traffic by more than 15% on average compared to LRU baseline. When used on both LLC and DRAM cache, ARW policies achieve an impressive reduction of 40% in write traffic without system performance degradation. When employed on the on-disk buffer of the Solid State Drive (SSD), ARW demonstrates significant reductions in both write traffic and overall access latency. Moreover, ARW policies are lightweight, easy to implement, and incur negligible storage and runtime overhead.

  • NAND Phase Change Memory with Block Erase Architecture and Pass-Transistor Design Requirements for Write and Disturbance

    Koh JOHGUCHI  Kasuaki YOSHIOKA  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    351-359

    In this paper, we propose an optimum access method for a phase change memory (PCM) with NAND strings. A PCM with a block erase interface is proposed. The method, which has a SET block erase operation and fast RESET programming, is proposed since the SET operation causes a slow access time for conventional PCM;. From the results of measurement, the SET-ERASE operation is successfully completed while the RESET-ERASE operation is incomplete owing to serial connection. As a result, the block erase interface with the SET-ERASE and RESET program method realizes a 7.7 times faster write speed compared than a conventional RAM interface owing to the long SET time. We also give pass-transistor design guidelines for PCM with NAND strings. In addition, the write-capability and write-disturb problems are investigated. The ERASE operation for the proposed device structure can be realized with the same current as that for the SET operation of a single cell. For the pass transistor, about 4.4 times larger on-current is needed to carry out the RESET operation and to avoid the write-disturb problem than the minimum RESET current of a single cell. In this paper, the SET programming method is also verified for a conventional RAM interface. The experimental results show that the write-capability and write-disturb problems are negligible.

  • A Temperature Tracking Read Reference Current and Write Voltage Generator for Multi-Level Phase Change Memories

    Koh JOHGUCHI  Toru EGAMI  Kousuke MIYAJI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    342-350

    This paper gives a write voltage and read reference current generator considering temperature characteristics for multi-level Ge2Sb2Te5-based phase change memories. Since the optimum SET and RESET voltages linearly changes by the temperature, the voltage supply circuit must track this characteristic. In addition, the measurement results show that the read current depends on both read temperature and the write temperature and has exponential dependence on the read temperature. Thus, the binning technique is applied for each read and write temperature regions. The proposed variable TC generator can achieve below ±0.5 LSB precision from the measured differential non-linearity and integral non-linearity. As a result, the temperature characteristics of both the linear write voltage and the exponential read current can be tracked with the proposed variation tolerant linear temperature coefficient current generator.

  • A Single Element Phase Change Memory Open Access

    Sang-Hyeon LEE  Moonkyung KIM  Byung-ki CHEONG  Jooyeon KIM  Jo-Won LEE  Sandip TIWARI  

     
    INVITED PAPER

      Vol:
    E94-C No:5
      Page(s):
    676-680

    We report a fast single element nonvolatile memory that employs amorphous to crystalline phase change. Temperature change is induced within a single electronic element in confined geometry transistors to cause the phase change. This novel phase change memory (PCM) operates without the need for charge transport through insulator films for charge storage in a floating gate. GeSbTe (GST) was employed to the phase change material undergoing transition below 200. The phase change, causing conductivity and permittivity change of the film, results in the threshold voltage shift observed in transistors and capacitors.