1-5hit |
Parfait I. TEBE Yujun KUANG Affum E. AMPOMA Kwasi A. OPARE
In this paper, we provide a novel solution to mitigate pilot contamination in massive MIMO technology. In the proposed approach, we consider seven copilot cells of the first layer of interfering cells of a cellular network. We derive and formulate the worst-case signal-to-interference power ratio (SIR) of a typical user in both downlink and uplink of a pilot contaminated cell. Based on the formulated SIR and other considerations of the system, the total pilot sequence length, the reliability of channel estimation within the cell, the spectral and energy efficiencies are derived and formulated in downlink. The user's transmit power and the achievable sum rate are also derived and formulated in uplink. Our results show that when the cell size is reduced the pilot contamination is significantly mitigated and hence the system performance is improved.
The pilot symbols in the broadband Air-to-Ground (A/G) communications system, e.g., L-band Digital Aeronautical Communications System (L-DACS1), are expected to be also utilized for navigation. In order to identify the co-channel signals from different Ground Stations (GSs), the N-Shift Zero Correlation Zone (NS-ZCZ) sequences are employed for pilot sequences. The ideal correlation property of the proposed pilot sequence in ZCZ can maintain the signal with less co-channel interference. The simulation confirms that the more co-channel GSs are employed, the higher navigation accuracy can be achieved.
Bin SHENG Pengcheng ZHU Xin FANG Wanlin LI
Accurate channel estimation is necessary before we can demodulate orthogonal frequency division multiplexing (OFDM) signals since the radio channel is frequency-selective and time-varying for wideband mobile communication systems. For pilot-symbol-aided channel estimation, pilot sequences are inserted periodically into the data stream enabling coherent detection at receiver. The control signal information can be embedded in pilot sequences and transmitted implicitly in OFDM systems to save the bandwidth. In order to estimate the channel and control signal jointly at the receiver, we propose a novel noise subspace based method in this paper. The proposed method is developed from the DFT-based channel estimator. If the hypothesized sequence coincides with the transmitted pilot sequence, the last part of the channel impulse response (CIR) estimate is only contributed by Gaussian noise and its average power is expected to be the minimum among all possible hypothesized sequences. Simulation results show that the proposed method works well in any of the channels even if integer carrier frequency offset (CFO) is considered.
I Gede Puja ASTAWA Minoru OKADA
This paper proposes a diversity scheme for Multi-Input Multi-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) based on Radio Frequency (RF) signal processing. Although a 22 MIMO-OFDM system can double the capacity without expanding the occupied frequency bandwidth, we cannot get additional diversity gain using the linear MIMO decomposition method. The proposed method improves the bit error rate (BER) performance by making efficient use of RF signal processing. Computer simulation results show that the proposed scheme gives additional diversity gain.
Chengyu LIN Wenjun ZHANG Feng YANG Youyun XU
To improve the performance of the optimal pilot sequences over multiple OFDM symbols in fast time-varying channels, this letter proposes a novel channel estimation method using virtual pilot tones in multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Assuming that the superimposed virtual pilot tones at the data locations over the specific sub-carriers are transmitted from all transmit antennas, the corresponding virtual received pilot signals at the same locations are obtained from the neighboring real received pilot signals over the same sub-carriers by Wiener filter. Based on the least squares (LS) channel estimation, the channel parameters can be obtained from the combination of the virtual and real received pilot signals over one OFDM symbol. Simulation results show that the proposed channel estimation method greatly outperforms the previous method for the optimal pilot sequences over multiple OFDM symbols in fast time-varying channels, as well as approaches the method for the comb-type optimal pilot sequences in performance.