The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] random forest classifier(1hit)

1-1hit
  • A Robust Indoor/Outdoor Detection Method Based on Spatial and Temporal Features of Sparse GPS Measured Positions

    Sae IWATA  Kazuaki ISHIKAWA  Toshinori TAKAYAMA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER-Intelligent Transport System

      Vol:
    E102-A No:6
      Page(s):
    860-865

    Cell phones with GPS function as well as GPS loggers are widely used and we can easily obtain users' geographic information. Now classifying the measured GPS positions into indoor/outdoor positions is one of the major challenges. In this letter, we propose a robust indoor/outdoor detection method based on sparse GPS measured positions utilizing machine learning. Given a set of clusters of measured positions whose center position shows the user's estimated stayed position, we calculate the feature values composed of: positioning accuracy, spatial features, and temporal feature of measured positions included in every cluster. Then a random forest classifier learns these feature values of the known data set. Finally, we classify the unknown clusters of measured positions into indoor/outdoor clusters using the learned random forest classifier. The experiments demonstrate that our proposed method realizes the maximum F1 measure of 1.000, which classifies measured positions into indoor/outdoor ones with almost no errors.