The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] reactor(8hit)

1-8hit
  • Real-Time Color Image Improvement System for Visual Testing of Nuclear Reactors

    Naoki HOSOYA  Atsushi MIYAMOTO  Junichiro NAGANUMA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1243-1250

    Nuclear power plants require in-vessel inspections for soundness checks and preventive maintenance. One inspection procedure is visual testing (VT), which is based on video images of an underwater camera in a nuclear reactor. However, a lot of noise is superimposed on VT images due to radiation exposure. We propose a technique for improving the quality of those images by image processing that reduces radiation noise and enhances signals. Real-time video processing was achieved by applying the proposed technique with a parallel processing unit. Improving the clarity of VT images will lead to reducing the burden on inspectors.

  • Far-End Reactor Matching to a Traveling Load Along an RF Power Transmission Line

    Sonshu SAKIHARA  Satoshi KITABAYASHI  Naoki SAKAI  Takashi OHIRA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    396-401

    This paper presents a novel circuit for impedance matching to a load moving along a transmission line. This system is called FERMAT: Far-End Reactor MATching. The FERMAT consists of a power transmission line and a variable reactor at its far-end. The proposed system moves standing-wave antinodes to the position of the vehicle in motion. Therefore, the moving vehicle can be fed well at any position on the line. As a theoretical result, we derive adjustable matching conditions in FERMAT. We verified that the experimental result well agrees with the theory.

  • Continuous Liquid Phase Synthesis of Europium and Bismuth Co-Doped Yttrium Vanadate Nanophosphor Using Microwave Heating Open Access

    Takashi KUNIMOTO  Yoshiko FUJITA  Hiroshi OKURA  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1249-1254

    A continuous flow reactor equipped with a low-loss flow channel and a microwave cavity was developed for synthesizing nanophosphors. A continuous solution synthesis of YVO4:Eu,Bi nanophosphor was succeeded through the rapid hydrothermal method using this equipment. Internal quantum efficiency of YVO4:Eu,Bi nanophosphor obtained by 20 minutes microwave heating is about 30% at 320 nm as high as that obtained by 6 hours hydrothermal treatment in autoclave.

  • An Improved Gate Drive Circuit Using an Air Core Reactor Developed for High Power GTO Thyristors

    Hirofumi MATSUO  Fujio KUROKAWA  Katsuji IIDA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E89-B No:1
      Page(s):
    196-202

    This paper presents an improved gate drive circuit for high power GTO thyristors. The energy-storage/transfer characteristics of an air-core reactor and the fast switching characteristics of FET are employed to make a high gate current of sharp pulse form. The power loss in the gate drive circuit is reduced by using the low resistance and the hysteresis comparator to detect and control the steady on-gate current. The proposed gate drive circuit is analyzed and its usefulness is confirmed by experiments.

  • Bandwidth of Electronically Steerable Parasitic Array Radiator Antennas in Single Beam Scanning

    Katsuhisa ITO  Akira AKIYAMA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E86-B No:9
      Page(s):
    2844-2847

    ESPAR (Electronically Steerable Passive Array Radiator) antennas were proposed as candidates for low-cost analog adaptive beamforming. The radiation pattern is controlled in an azimuthal plane by variable reactors loaded on each passive element. This paper estimates the frequency bandwidth of an ESPAR antenna in a single beam scanning operation. Bandwidth in terms of gain is predicted statistically as functions of beam direction and dynamic range of variable reactance. The -3 dB bandwidth of 7-element ESPAR antennas can be about 30%, 25% and 15% for the range of reactance of -100Ω Xn 100Ω, -50Ω Xn 50Ω and -100Ω Xn 0Ω, respectively, while the improper choice of reactance sets results in narrow bandwidth less than 5%.

  • Development of Biological Micro Reactor Array System

    Etsuo SHINOHARA  Seiji KONDO  Kouki AKAHORI  Kohichi TASHIRO  Shuichi SHOJI  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1807-1813

    A micro reactor array for biochemical or biomedical use was developed. Conceptof this development is to get as much as biological data at the same time. Ninety-six micro reaction wells, volume of each well was 1.5 µl, were integrated in the array. The micro reactor array was fabricated on 1 mm thick silicon wafer and twelve pairs of a temperature sensor and a heater were formed on the backside. A tiny transparent window for optical measurement was formed at the center of bottom wall on each well. Several temperature gradients were applied to the array by means of few heaters and compared with simulation results to optimize the parameters. Finally, performance of the array was evaluated by basic DNA reaction. Advantages of the array system are the fast thermal response due to the small heat capacity and easy to make several reaction conditions in parallel.

  • Equipment Simulation of Production Reactors for Silicon Device Fabrication

    Christoph WERNER  

     
    INVITED PAPER

      Vol:
    E82-C No:6
      Page(s):
    992-996

    Equipment simulation can provide valuable support in reactor design and process optimization. This article describes the physical and chemical models used in this technique and the current state of the art of the available software tools is reviewed. Moreover, the potential of equipment simulation will be highlighted by means of three recent examples from advanced quarter micron silicon process development. These include a vertical batch reactor for LPCVD of arsenic doped silicon oxide, a multi station tungsten CVD reactor, and a plasma reactor for silicon etching.

  • A General Analysis of the Zero-Voltage Switched Quasi-Resonant Buck-Boost Type DC-DC Converter in the Continuous and Discontinuous Modes of the Reactor Current

    Hirofumi MATSUO  Hideki HAYASHI  Fujio KUROKAWA  Mutsuyoshi ASANO  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1159-1170

    The characteristics of voltage-resonant dc-dc converters have already been analyzed and described. However, in the conventional analysis, the inductance of the reactor is assumed to be infinity and the loss resistance of the power circuit is not taken into account. Also, in some cases, the averaging method is applied to analyze the resonant dc-dc converters as well as the pwm dc-dc converters. Consequently, the results from conventional analysis are not entirely in agreement with the experimental ones. This paper presents a general design-oriented analysis of the buck-boost type voltage-resonant dc-dc converter in the continuous and discontinuous modes of the reactor current. In this analysis, the loss resistance in each part of the power circuit, the inductance of the reactor, the effective value (not mean value) of the power loss, and the energy-balance among the input, output and internal-loss powers are taken into account. As a result, the behavior and characteristics of the buck-boost type voltage-resonant dc-dc converter are fully explained. It is also revealed that there is a useful mode in the discontinuous reactor current region, in which the output voltage can be regulated sufficiently for the load change from no load to full load and for the relatively large change of the input voltage, and then the change in the switching frequency can be kept relatively small.