The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] regular(148hit)

141-148hit(148hit)

  • Pipelining Gauss Seidel Method for Analysis of Discrete Time Cellular Neural Networks

    Naohiko SHIMIZU  Gui-Xin CHENG  Munemitsu IKEGAMI  Yoshinori NAKAMURA  Mamoru TANAKA  

     
    PAPER-Neural Networks

      Vol:
    E77-A No:8
      Page(s):
    1396-1403

    This paper describes a pipelining universal system of discrete time cellular neural networks (DTCNNs). The new relaxation-based algorithm which is called a Pipelining Gauss Seidel (PGS) method is used to solve the CNN state equations in pipelining. In the systolic system of N processor elements {PEi}, each PEi performs the convolusional computation (CC) of all cells and the preceding PEi-1 performs the CC of all cells taking precedence over it by the precedence interval number p. The expected maximum number of PE's for the speeding up is given by n/p where n means the number of cells. For its application, the encoding and decoding process of moving images is simulated.

  • Parallel Analog Image Coding and Decoding by Using Cellular Neural Networks

    Mamoru TANAKA  Kenneth R. CROUNSE  Tamás ROSKA  

     
    PAPER-Neural Networks

      Vol:
    E77-A No:8
      Page(s):
    1387-1395

    This paper describes highly parallel analog image coding and decoding by cellular neural networks (CNNs). The communication system in which the coder (C-) and decoder (D-) CNNs are embedded consists of a differential transmitter with an internal receiver model in the feedback loop. The C-CNN encodes the image through two cascaded techniques: structural compression and halftoning. The D-CNN decodes the received data through a reconstruction process, which includes a dynamic current distribution, so that the original input to the C-CNN can be recognized. The halftoning serves as a dynamic quantization to convert each pixel to a binary value depending on the neighboring values. We approach halftoning by the minimization of error energy between the original gray image and reconstructed halftone image, and the structural compression from the viewpoints of topological and regularization theories. All dynamics are described by CNN state equations. Both the proposed coding and decoding algorithms use only local image information in a space inveriant manner, therefore errors are distributed evenly and will not introduce the blocking effects found in DCT-based coding methods. In the future, the use of parallel inputs from on-chip photodetectors would allow direct dynamic quantization and compression of image sequences without the use of multiple bit analog-to-digital converters. To validate our theory, a simulation has been performed by using the relaxation method on an 150 frame image sequence. Each input image was 256256 pixels whth 8 bits per pixel. The simulated fixed compression rate, not including the Huffman coding, was about 1/16 with a PSNR of 31[dB]35[dB].

  • Recognition of Elevation Symbols and Reconstruction of 3D Surface from Contours by Parallel Method

    Kazuhiko YAMAMOTO  Hiromitsu YAMADA  Sigeru MURAKI  

     
    PAPER

      Vol:
    E77-D No:7
      Page(s):
    749-753

    In this paper, symbols and numerals in topographic maps are recognized by the multi-angled parallelism (MAP) matching method, and small dots and lines are extracted by the MAP operation method. These results are then combined to determine the value, position, and attributes of elevation marks. Also, we reconstruct three dimensional surfaces described by contours, which is difficult even for humans since the elevation symbols are sparse. In reconstruction of the surface, we define an energy function that enfores three constraints: smoothness, fit, and contour. This energy function is minimized by solving a large linear system of simultaneous equations. We describe experiments on 25,000:1 scale topographic maps of the Tsukuba area.

  • 4-2 Compressor with Complementary Pass-Transistor Logic

    Youji KANIE  Yasushi KUBOTA  Shinji TOYOYAMA  Yasuaki IWASE  Shuhei TSUCHIMOTO  

     
    LETTER-Electronic Circuits

      Vol:
    E77-C No:4
      Page(s):
    647-649

    This report describes 4-2 compressors composed of Complementary Pass-Transistor Logic (CPL). We will show that circuit designs of the 4-2 compressors can be optimized for high speed and small size using only exclusive-OR's and multiplexers. According to a circuit simulation with 0.8µm CMOS device parameters, the maximum propagation delay and the average power consumption per unit adder are 1.32 ns and 11.6 pJ, respectively.

  • Verification of Register Transfer Level (RTL) Designs

    Alberto Palacios PAWLOVSKY  Sachio NAITO  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    785-791

    This paper describes a new method for verifying designs at the RTL with respect to their specifications at the functional level. The base of the verification method shown here is the translation of the specification and design representations to graph models, where the descriptions common to both representations have a symbolic representation. These symbol labeled graphs are then simplified and, by solving the all node-pair path expression problem for them, a pair of regular expressions is obtained for every two nodes in the graphs. The first regular expression in each pair represents the flow of control and the second one the flow of data between the corresponding nodes. The process of verification is carried out by checking whether or not every pair of regular expressions of the specification has a corresponding pair in the design.

  • Image Compression and Regeneration by Nonlinear Associative Silicon Retina

    Mamoru TANAKA  Yoshinori NAKAMURA  Munemitsu IKEGAMI  Kikufumi KANDA  Taizou HATTORI  Yasutami CHIGUSA  Hikaru MIZUTANI  

     
    PAPER-Neural Systems

      Vol:
    E75-A No:5
      Page(s):
    586-594

    Threre are two types of nonlinear associative silicon retinas. One is a sparse Hopfield type neural network which is called a H-type retina and the other is its dual network which is called a DH-type retina. The input information sequences of H-type and HD-type retinas are given by nodes and links as voltages and currents respectively. The error correcting capacity (minimum basin of attraction) of H-type and DH-type retinas is decided by the minimum numbers of links of cutset and loop respectively. The operation principle of the regeneration is based on the voltage or current distribution of the neural field. The most important nonlinear operation in the retinas is a dynamic quantization to decide the binary value of each neuron output from the neighbor value. Also, the edge is emphasized by a line-process. The rates of compression of H-type and DH-type retinas used in the simulation are 1/8 and (2/3) (1/8) respectively, where 2/3 and 1/8 mean rates of the structural and binarizational compression respectively. We could have interesting and significant simulation results enough to make a chip.

  • A Self-Consistent Linear Theory of Gyrotrons

    Kenichi HAYASHI  Tohru SUGAWARA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E75-C No:5
      Page(s):
    610-616

    A new set of self-consistent linear equations is presented for the analysis of the startup characteristics of gyrotron oscillators with an open cavity consisting of weakly irregular waveguides. Numerical results on frequency detuning and oscillation starting current for a whispering-gallery-mode gyrotron are described in which these equations were utilized. Experiments for making a check on the effectiveness of the derived equations showed that they well express the operation of gyrotrons in comparison with the linear theory using an empty cavity field as the wave field.

  • Polynomial-Time Identification of Strictly Regular Languages in the Limit

    Noriyuki TANIDA  Takashi YOKOMORI  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    125-132

    This paper concerns a subclass of regular languages, called strictly regular languages, and studies the problem of identifying the class of strictly regular languages in the limit from positive data. We show that the class of strictly regular languages (SRLs) is polynomial time identifiable in the limit from positive data. That is, there is an algorithm that, for any strictly regular language L, identifies a finite automaton accepting L, called a strictly deterministic finite automaton (SDFA) in the limit from positive data, satisfying the property that the time for updating a conjecture is bounded by O(mN2), where m is the cardinality of the alphabet for L and N is the sum of lengths of all positive data provided. This is in contrast with the fact that the class of regular languages is not identifiable in the limit from positive data.

141-148hit(148hit)