The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] rough set(14hit)

1-14hit
  • Dynamic Ensemble Selection Based on Rough Set Reduction and Cluster Matching

    Ying-Chun CHEN  Ou LI  Yu SUN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/04/11
      Vol:
    E101-B No:10
      Page(s):
    2196-2202

    Ensemble learning is widely used in the field of sensor network monitoring and target identification. To improve the generalization ability and classification precision of ensemble learning, we first propose an approximate attribute reduction algorithm based on rough sets in this paper. The reduction algorithm uses mutual information to measure attribute importance and introduces a correction coefficient and an approximation parameter. Based on a random sampling strategy, we use the approximate attribute reduction algorithm to implement the multi-modal sample space perturbation. To further reduce the ensemble size and realize a dynamic subset of base classifiers that best matches the test sample, we define a similarity parameter between the test samples and training sample sets that takes the similarity and number of the training samples into consideration. We then propose a k-means clustering-based dynamic ensemble selection algorithm. Simulations show that the multi-modal perturbation method effectively selects important attributes and reduces the influence of noise on the classification results. The classification precision and runtime of experiments demonstrate the effectiveness of the proposed dynamic ensemble selection algorithm.

  • A New Strategy for Virtual Machine Migration Based on Decision-Theoretic Rough Sets

    Hang ZHOU  Qing LI  Hai ZHU  Jian WANG  

     
    PAPER-Network

      Pubricized:
    2018/04/02
      Vol:
    E101-B No:10
      Page(s):
    2172-2185

    Large-scale virtualized data centers are increasingly becoming the norm in our data-intensive society. One pressing challenge is to reduce the energy consumption of servers while maintaining a high level of service agreement fulfillment. Due to the convenience of virtualization, virtual machine migration is an effective way to optimize the trade-off between energy and performance. However, there are obvious drawbacks in the current static threshold strategy for migration. This paper proposes a new decision strategy based on decision-theoretic rough sets. In the new strategy, the status of a server is determined by the Bayesian rough set model. The space is divided into positive, negative and boundary regions. According to this information, a migration decision with minimum risk will be made. This three-way decision framework in our strategy can reduce over-migration and delayed migration. The experiments in this paper show that this new strategy outperforms the benchmark examined. It is an efficient and flexible approach to the energy and performance trade-off in the cloud.

  • On the Properties and Applications of Inconsistent Neighborhood in Neighborhood Rough Set Models

    Shujiao LIAO  Qingxin ZHU  Rui LIANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/12/20
      Vol:
    E101-D No:3
      Page(s):
    709-718

    Rough set theory is an important branch of data mining and granular computing, among which neighborhood rough set is presented to deal with numerical data and hybrid data. In this paper, we propose a new concept called inconsistent neighborhood, which extracts inconsistent objects from a traditional neighborhood. Firstly, a series of interesting properties are obtained for inconsistent neighborhoods. Specially, some properties generate new solutions to compute the quantities in neighborhood rough set. Then, a fast forward attribute reduction algorithm is proposed by applying the obtained properties. Experiments undertaken on twelve UCI datasets show that the proposed algorithm can get the same attribute reduction results as the existing algorithms in neighborhood rough set domain, and it runs much faster than the existing ones. This validates that employing inconsistent neighborhoods is advantageous in the applications of neighborhood rough set. The study would provide a new insight into neighborhood rough set theory.

  • Novel Improvements on the Fuzzy-Rough QuickReduct Algorithm

    Javad Rahimipour ANARAKI  Mahdi EFTEKHARI  Chang Wook AHN  

     
    LETTER-Pattern Recognition

      Pubricized:
    2014/10/21
      Vol:
    E98-D No:2
      Page(s):
    453-456

    Feature Selection (FS) is widely used to resolve the problem of selecting a subset of information-rich features; Fuzzy-Rough QuickReduct (FRQR) is one of the most successful FS methods. This paper presents two variants of the FRQR algorithm in order to improve its performance: 1) Combining Fuzzy-Rough Dependency Degree with Correlation-based FS merit to deal with a dilemma situation in feature subset selection and 2) Hybridizing the newly proposed method with the threshold based FRQR. The effectiveness of the proposed approaches are proven over sixteen UCI datasets; smaller subsets of features and higher classification accuracies are achieved.

  • Rough-Mutual Feature Selection Based on Min-Uncertainty and Max-Certainty

    Sombut FOITONG  Ouen PINNGERN  Boonwat ATTACHOO  

     
    PAPER

      Vol:
    E95-D No:4
      Page(s):
    970-981

    Feature selection (FS) plays an important role in pattern recognition and machine learning. FS is applied to dimensionality reduction and its purpose is to select a subset of the original features of a data set which is rich in the most useful information. Most existing FS methods based on rough set theory focus on dependency function, which is based on lower approximation as for evaluating the goodness of a feature subset. However, by determining only information from a positive region but neglecting a boundary region, most relevant information could be invisible. This paper, the maximal lower approximation (Max-Certainty) – minimal boundary region (Min-Uncertainty) criterion, focuses on feature selection methods based on rough set and mutual information which use different values among the lower approximation information and the information contained in the boundary region. The use of this idea can result in higher predictive accuracy than those obtained using the measure based on the positive region (certainty region) alone. This demonstrates that much valuable information can be extracted by using this idea. Experimental results are illustrated for discrete, continuous, and microarray data and compared with other FS methods in terms of subset size and classification accuracy.

  • New Inter-Cluster Proximity Index for Fuzzy c-Means Clustering

    Fan LI  Shijin DAI  Qihe LIU  Guowei YANG  

     
    LETTER-Data Mining

      Vol:
    E91-D No:2
      Page(s):
    363-366

    This letter presents a new inter-cluster proximity index for fuzzy partitions obtained from the fuzzy c-means algorithm. It is defined as the average proximity of all possible pairs of clusters. The proximity of each pair of clusters is determined by the overlap and the separation of the two clusters. The former is quantified by using concepts of Fuzzy Rough sets theory and the latter by computing the distance between cluster centroids. Experimental results indicate the efficiency of the proposed index.

  • Improved Classification for Problem Involving Overlapping Patterns

    Yaohua TANG  Jinghuai GAO  

     
    PAPER-Pattern Recognition

      Vol:
    E90-D No:11
      Page(s):
    1787-1795

    The support vector machine has received wide acceptance for its high generalization ability in real world classification applications. But a drawback is that it uniquely classifies each pattern to one class or none. This is not appropriate to be applied in classification problem involves overlapping patterns. In this paper, a novel multi-model classifier (DR-SVM) which combines SVM classifier with kNN algorithm under rough set technique is proposed. Instead of classifying the patterns directly, patterns lying in the overlapped region are extracted firstly. Then, upper and lower approximations of each class are defined on the basis of rough set technique. The classification operation is carried out on these new sets. Simulation results on synthetic data set and benchmark data sets indicate that, compared with conventional classifiers, more reasonable and accurate information about the pattern's category could be obtained by use of DR-SVM.

  • Fuzzy Rule and Bayesian Network Based Line Interpolation for Video Deinterlacing

    Gwanggil JEON  Jechang JEONG  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E90-B No:6
      Page(s):
    1495-1507

    Detecting edge directions and estimating the exact value of a missing line are currently active research areas in deinterlacing processing. This paper proposes a spatial domain fuzzy rule that is based on an interpolation algorithm, which is suitable to the region with high motion or scene change. The algorithm utilizes fuzzy theory to find the most accurate edge direction with which to interpolate missing pixels. The proposed fuzzy direction oriented interpolator operates by identifying small pixel variations in seven orientations (0°, 45°, -45°, 63°, -63°, 72°, and -72°), while using rules to infer the edge direction. The Bayesian network model selects the most suitable deinterlacing method among three deinterlacing methods and it successively builds approximations of the deinterlaced sequence, by evaluating three methods in each condition. Detection and interpolation results are presented. Experimental results show that the proposed algorithm provides a significant improvement over other existing deinterlacing methods. The proposed algorithm is not only for speed, but also effective for reducing deinterlacing artifacts.

  • Encoding of Still Pictures by Wavelet Transform with Vector Quantization Using a Rough Fuzzy Neural Network

    Shao-Han LIU  Jzau-Sheng LIN  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:9
      Page(s):
    1896-1902

    In this paper color image compression using a fuzzy Hopfield-model net based on rough-set reasoning is created to generate optimal codebook based on Vector Quantization (VQ) in Discrete Wavelet Transform (DWT). The main purpose is to embed rough-set learning scheme into the fuzzy Hopfield network to construct a compression system named Rough Fuzzy Hopfield Net (RFHN). First a color image is decomposed into 3-D pyramid structure with various frequency bands. Then the RFHN is used to create different codebooks for various bands. The energy function of RFHN is defined as the upper- and lower-bound fuzzy membership grades between training samples and codevectors. Finally, near global-minimum codebooks in frequency domain can be obtained when the energy function converges to a stable state. Therefore, only 32/N pixels are selected as the training samples if a 3N-dimensional color image was used. In the simulation results, the proposed network not only reduces the consuming time but also preserves the compression performance.

  • A Rough Set Based Clustering Method by Knowledge Combination

    Tomohiro OKUZAKI  Shoji HIRANO  Syoji KOBASHI  Yutaka HATA  Yutaka TAKAHASHI  

     
    PAPER-Databases

      Vol:
    E85-D No:12
      Page(s):
    1898-1908

    This paper presents a rough sets-based method for clustering nominal and numerical data. This clustering result is independent of a sequence of handling object because this method lies its basis on a concept of classification of objects. This method defines knowledge as sets that contain similar or dissimilar objects to every object. A number of knowledge are defined for a data set. Combining similar knowledge yields a new set of knowledge as a clustering result. Cluster validity selects the best result from various sets of combined knowledge. In experiments, this method was applied to nominal databases and numerical databases. The results showed that this method could produce good clustering results for both types of data. Moreover, ambiguity of a boundary of clusters is defined using roughness of the clustering result.

  • Measuring the Degree of Reusability of the Components by Rough Set and Fuzzy Integral

    WanKyoo CHOI  IlYong CHUNG  SungJoo LEE  

     
    PAPER-Software Engineering

      Vol:
    E85-D No:1
      Page(s):
    214-220

    There were researches that measured effort required to understand and adapt components based on the complexity of the component, which is some general criterion related to the intrinsic quality of the component to be adapted and understood. They, however, don't consider significance of the measurement attributes and user must decide reusability of similar components for himself. Therefore, in this paper, we propose a new method that can measure the DOR (Degree Of Reusability) of the components by considering the significance of the measurement attributes. We calculates the relative significance of them by using rough set and integrate the significance with the measurement value by using Sugeno's fuzzy integral. Lastly, we apply our method to the source code components and show through statistical technique that it can be used as the ordinal and ratio scale.

  • Identifying the Structure of Business Processes for Comprehensive Enterprise Modeling

    Yoshiyuki SHINKAWA  Masao J. MATSUMOTO  

     
    PAPER-Software Engineering

      Vol:
    E84-D No:2
      Page(s):
    239-248

    It is one of the difficulties in enterprise modeling that we must deal with many fragmented pieces of knowledge provided by various domain-experts, which are usually based on mutually different viewpoints of them. This paper presents a formal approach to integrate those pieces into enterprise-wide model units using Rough Set Theory (RST). We focus on business processes in order to recognize and identify the constituents or units of enterprise models, which would compose the model expressing the various aspects of the enterprise. We defined five model unit types of "resource," "organization," "task," "function," and "behavior. " The first three types represent the static aspect of the enterprise, whereas the last two types represent the dynamic aspect of it. Those units are initially elicited from each domain-expert as his/her own individual model units, then they are integrated into enterprise-wide units using RST. Our approach is methodology-free, and any methodologies can include it in their early stage to identify what composes the enterprise.

  • Knowledge-Based Software Composition Using Rough Set Theory

    Yoshiyuki SHINKAWA  Masao J. MATSUMOTO  

     
    PAPER-Theory and Methodology

      Vol:
    E83-D No:4
      Page(s):
    691-700

    Software Composition is one of the major concerns in component based software development (CBSD). In this paper, we present a formal approach to construct software systems from requirements models using available components. We focus on the knowledge resides in the requirements and the components in order to deal with those heterogeneous concepts. This approach consists of three steps. The first step is selecting adaptable components to the requirements model. The requirements and the components are transformed into the form of Σ algebra, and the component adaptability is evaluated by Σ homomorphism. Rough Set Theory (RST) is used to make carriers of two Σ algebras common, which are derived from the requirements and the components. The second step is identifying the control structure of the requirements. Decision tables are used for representing the knowledge on the requirements, and RST is used to optimize the control structure. The third step is to implement the control structure as glue codes which would perform the components appropriately. This approach mainly focuses on enterprise back-office applications in this paper, however, it can be easily applied to other domains, since it assumes the requirements to be expressed in Colored Petri Nets (CPN), and CPN can express various problem domains other than enterprise back-office applications.

  • On a Logic Based on Graded Modalities

    Akira NAKAMURA  

     
    PAPER-Logic and Logic Functions

      Vol:
    E76-D No:5
      Page(s):
    527-532

    The purpose of this paper is to offer a modal logic which enables us symbolic reasoning about data, especially, fuzzy relations. For such a purpose, the present author provided some systems of modal fuzzy logic. As a continuous one of those previous works, a logic based on the graded modalities is proposed. After showing some properties of this logic, the decision procedure for this logic is given in the rectangle method.