The search functionality is under construction.

Keyword Search Result

[Keyword] self synchronous(3hit)

1-3hit
  • Self Synchronous Circuits for Robust Operation in Low Voltage and Soft Error Prone Environments

    Benjamin DEVLIN  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    518-527

    In this paper we show that self synchronous circuits can provide robust operation in both soft error prone and low voltage operating environments. Self synchronous circuits are shown to be self checking, where a soft error will either cause a detectable error or halt operation of the circuit. A watchdog circuit is proposed to autonomously detect dual-rail '11' errors and prevent propagation, with measurements in 65 nm CMOS showing seamless operation from 1.6 V to 0.37 V. Compared to a system without the watchdog circuit size and energy-per-operation is increased 6.9% and 16% respectively, while error tolerance to noise is improved 83% and 40% at 1.2 V and 0.4 V respectively. A circuit that uses the dual-pipeline circuit style as redundancy against permanent faults is also presented and 40 nm CMOS measurement results shows correct operation with throughput of 1.2 GHz and 810 MHz at 1.1 V before and after disabling a faulty pipeline stage respectively.

  • Energy Minimum Operation with Self Synchronous Gate-Level Autonomous Power Gating and Voltage Scaling

    Benjamin DEVLIN  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    546-554

    A 65 nm self synchronous field programmable gate array (SSFPGA) which uses autonomous gate-level power gating with minimal control circuitry overhead for energy minimum operation is presented. The use of self synchronous signaling allows the FPGA to operate at voltages down to 370 mV without any parameter tuning. We show both 2.6x total energy reduction and 6.4x performance improvement at the same time for energy minimum operation compared to the non-power gated SSFPGA, and compared to the latest research 1.8x improvement in power-delay product (PDP) and 2x performance improvement. When compared to a synchronous FPGA in a similar process we are able to show up to 84.6x PDP improvement. We also show energy minimum operation for maximum throughput on the power gated SSFPGA is achieved at 0.6 V, 27 fJ/operation at 264 MHz.

  • A Low Power and High Throughput Self Synchronous FPGA Using 65 nm CMOS with Throughput Optimization by Pipeline Alignment

    Benjamin STEFAN DEVLIN  Toru NAKURA  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:7
      Page(s):
    1319-1328

    We detail a self synchronous field programmable gate array (SSFPGA) with dual-pipeline (DP) architecture to conceal pre-charge time for dynamic logic, and its throughput optimization by using pipeline alignment implemented on benchmark circuits. A self synchronous LUT (SSLUT) consists of a three input tree-type structure with 8 bits of SRAM for programming. A self synchronous switch box (SSSB) consists of both pass transistors and buffers to route signals, with 12 bits of SRAM. One common block with one SSLUT and one SSSB occupies 2.2 Mλ2 area with 35 bits of SRAM, and the prototype SSFPGA with 3430 (1020) blocks is designed and fabricated using 65 nm CMOS. Measured results show at 1.2 V 430 MHz and 647 MHz operation for a 3 bit ripple carry adder, without and with throughput optimization, respectively. We find that using the proposed pipeline alignment techniques we can perform at maximum throughput of 647 MHz in various benchmarks on the SSFPGA. We demonstrate up to 56.1 times throughput improvement with our pipeline alignment techniques. The pipeline alignment is carried out within the number of logic elements in the array and pipeline buffers in the switching matrix.