1-14hit |
Jae-Ho LEE Takuichi HIRANO Jiro HIROKAWA Makoto ANDO
Method of moments (MoM) is an efficient design and analysis method for waveguide slot arrays. A rectangular entire-domain basis function is one of the most popular approximations for the slot aperture fields. MoM with only one basis function does not provide sufficient accuracy and the use of higher order mode of basis functions is inevitable to guarantee accuracy. However, including the higher order modes in MoM results in a rapid increase in the computational time as well as the analysis complexity; this is a serious drawback especially in the slot parameter optimization. The authors propose the slot correction length that compensates for the omission of higher order mode of basis functions. This length is constant for a wide range of couplings and frequency bands for various types of slots. The validity and universality of the concept of slot correction length are demonstrated for various slots and slot parameters. Practical slot array design can be drastically simplified by the use of MoM with only one basis function together with the slot correction length. As an example, a linear waveguide array of reflection-cancelling slot pairs is successfully designed.
Miao ZHANG Jiro HIROKAWA Makoto ANDO
Introducing diffusion bonding of laminated thin metal plates to the fabrication of slotted waveguide arrays enlightens the high potential and the feasibility of multi-layer antennas with high-performance. It is a promising process with low cost even for a double-layer antenna, because the number of etching patterns for thin metal plates is only five. In this paper, a double-layer antenna for broadband characteristics is designed in 39 GHz band as demonstration. A 20 20-element antenna is composed of 2 2 sub-arrays by installing a partially-corporate feed circuit in the bottom layer underneath radiating waveguides in the top layer. The five-element sub-arrays in both the feeding and radiating parts are designed first. A new structure for the last slot coupler with shortened termination is also proposed to avoid an extra slot-free region when assembling the neighbor sub-arrays. As the simulation results by HFSS, the maximum gain of 34.55 dBi with the antenna efficiency of 85.5% is estimated at 38.5 GHz. The test antenna is fabricated by the diffusion bonding of thin copper plates. As the measurement results, a very high aperture efficiency of 83.2% with the directivity of 34.5 dBi is realized at the center frequency of 38.75 GHz, where the antenna gain of 34.4 dBi with the high antenna efficiency of 81.4% is achieved. The bandwidth of 5.0% defined as 1 dB down from the maximum gain is achieved.
Takehito SUZUKI Jiro HIROKAWA Makoto ANDO
This paper presents the analysis and design of a reflection-cancelling transverse slot-pair array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. For the transverse slot array, the slot spacings with more than one free-space wavelength cause the grating-lobes. The baffles suppress the grating-lobes effectively. A one-dimensional slot array is extracted from the 2D array with in-phase excitation by assuming periodicity in the transversal direction. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot-pairs, which greatly accelerate the iterations process. Experiments at 25.3 GHz demonstrate the suppression of the grating lobes to the level less than -20.0 dB and also the good uniformity of the aperture field distribution.
Takehito SUZUKI Jiro HIROKAWA Makoto ANDO
This paper presents the formulation for the evaluation of external coupling in the alternating-phase feed single-layer slotted waveguide array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. A one-dimensional slot array is extracted from the array by assuming the periodicity in transversal direction and introducing the perfect electric conductors in the external region. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot pair which accelerate the iteration. Experiment at 25.3 GHz demonstrates good uniformity of the aperture field distribution as well as the effects of the baffles. The directivity is 32.7 dB which corresponds to the aperture efficiency 90.5% and the reflection is below -15.0 dB over 1.3 GHz.
Miao ZHANG Jiro HIROKAWA Makoto ANDO
Lightweight single-layer slotted waveguide array antennas are fabricated using plastic materials with metal-plating. A plastic material that has good heat-radiation properties is investigated. Three types of antennas are fabricated by milling, using ABS resin, heat-radiating plastic, and aluminum alloy. In measurements, all three types of antennas are confirmed to have almost the same VSWR and gain in the 25 GHz frequency band.
Yuichi KIMURA Atsuo SENGA Masayoshi SAKAI Misao HANEISHI
This paper presents design of an alternating-phase fed single-layer slotted waveguide array for a sector shaped beam in the E-plane radiation pattern. A sector beam pattern is very effective for radar applications for detecting obstacles in a certain angular range without mechanical or electronic scanning. The sector shaped beam with 13 degree beam width is synthesized by a cascade of T-junctions in the feed waveguide which excite the radiating waveguides with a longitudinal shunt slot array. In order to realize the required excitation distribution of the radiating waveguides for the sector shaped beam, 30 T-junctions with symmetrical arrangement are designed by tuning a width of the coupling window, an offset of the window, and a width of the feed waveguide cascaded to the subsequent T-junction, respectively. Design and measurement are performed in 60 GHz band. The prototype antenna assembles easily; the slotted plate is just tacked on the groove feed structure and is fixed by screws at the periphery, which is the key advantage of the alternating-phase fed arrays. The measured sector pattern with low sidelobe level agrees well with the predicted one. Validity of the sector beam design as well as the performance of the alternating-phase fed array is confirmed by the measurement.
Takuichi HIRANO Kimio SAKURAI Jiro HIROKAWA Makoto ANDO Tetsuya IDE Atsushi SASAKI Kazufumi AZUMA Yukihiko NAKATA
The authors have proposed a 1 m2 single-layer slotted waveguide array consisting of conducting baffles and quartz glass strips positioned in front of the slot aperture, which is referred to as a vacuum window, for microwave plasma excitation. The effect of the complicated outer vacuum window hinders the realization of uniform distribution. In this paper, a unit-cell of the alternating-phase fed single-layer slotted waveguide array with the vacuum window is analyzed by generalized scattering matrix method (GSM)-method of moments (MoM) hybridization analysis, and the array is designed to realize uniform aperture electromagnetic field distribution, where the plasma and the chamber is neglected. The GSM-MoM analysis gives reliable numerical results while the MoM has numerical errors due to singularities of Green's function for a long cavity. Uniform aperture EM field distribution outside of the vacuum window is observed in near field measurements using a 1/5 scale model antenna, and the validity of the analysis and design is verified.
Miao ZHANG Jiro HIROKAWA Makoto ANDO
In this paper, a three-way divider is proposed for a partially-corporate feed in an alternating phase-fed single-layer slotted waveguide array. The divider is placed at the middle of the feed waveguide and reduces the long line effects; the frequency bandwidth is doubled. It is a kind of cross junction with one input port and three output ports; most of the power is equally divided into the right and left halves of the feed waveguide while the rest of power goes straight into the center radiating waveguide. Based upon the moment method design of the three-way divider, an inductive post is introduced for wide band power dividing control to the radiating waveguide. Reflection is below -20 dB over a wide bandwidth of 24.3-26.3 GHz, and the range of power dividing ratio ranges from 1/43 to 1/4. The amplitude and the phase from the two output ports to the feed waveguide are well balanced, and the differences are less than 0.1 dB and 5.0 degrees, respectively. The MoM analysis and the wide band design are verified experimentally in the 4 GHz band.
Yuichi KIMURA Masanari TAKAHASHI Jiro HIROKAWA Makoto ANDO Misao HANEISHI
This paper presents designs and performances of 76 GHz band alternating-phase fed single-layer slotted waveguide arrays. Two kinds of design, that is, uniform aperture illumination for maximum gain and Taylor distribution for sidelobe suppression of -25 dB, are conducted. High gain and high efficiency performance of 34.8 dBi with 57% is achieved for the former, while satisfactory sidelobe suppression of -20 dB in the H-plane and -23 dB in the E-plane with high efficiency is confirmed for the latter. The simple structure dispensing with electrical contact between the slotted plate and the groove feed structure is the key advantage of alternating-phase fed arrays and the slotted plate is just tacked on the feed structure with screws at the periphery. High gain and high efficiency performances predicted theoretically as well as design flexibility of the alternating-phase fed array are demonstrated in the millimeter wave frequency.
Hisahiro KAI Jiro HIROKAWA Makoto ANDO
A post-wall waveguide-fed parallel plate slotted array is an attractive candidate for high efficiency and mass producible planar array antennas for millimeter wave applications. For the slot design of this large sized array, a periodic boundary wall model based on the assumption of infinite array size and a parallel waveguide is used. In fact, the aperture is large but still finite (10-40 wavelength) and the TEM-like wave is perturbed due to the narrow walls at the periphery of the aperture as well as the slot coupling; antenna efficiency is affected by the size and the aspect ratio of the aperture. All these observations imply the unique defects of oversized waveguide arrays. In this paper, the aperture efficiency of post-wall waveguide arrays is assessed as a function of size and aspect ratio of the aperture for the first time, both in theory and measurement. An effective field analysis for an electrically large oversized waveguide array, developed by the author, is utilized for determining the slot excitation coefficients and aperture illumination. It is predicted that the oversized waveguide array has a potential efficiency of 80-90% if the aperture is larger than 18 wavelength on a side and the gain is more than 30 dBi. A transversely wide aperture generally provides higher efficiency than a longitudinally long aperture, provided a perfectly uniform TEM wave would be launched from the feed waveguide.
Makoto HIGAKI Jiro HIROKAWA Makoto ANDO
A mechanical phase shifter is designed for beam scanning in co-phase fed single-layer slotted waveguide arrays. The multiple-way power divider in this array consists of a series of π-junctions with one guide wavelength spacing in a feed waveguide. The movable narrow walls placed between the π-junctions perturb the guide wavelength as well as the phase of output ports. Method of Moment (MoM) analysis for one unit consisting of one movable plate and two junctions is conducted to estimate the available phase shift as well as the degradation of reflection. A phase shift of 86 degrees is predicted between two π-junctions under the condition of reflection below -20 dB; experiments at 4 GHz confirmed the design. The beam scanning capability of the arrays is also surveyed and the beam-scanning of about 10 degrees is predicted.
Se-Hyun PARK Jiro HIROKAWA Makoto ANDO
The authors propose a novel 3-way power divider named a planar cross-junction, which is used as the center feed for single-layer slotted waveguide arrays. A feeding waveguide consisting of a cascade connection of these dividers is placed at the middle of radiating waveguide in a single layer. The length of radiating waveguides is halved; the long line effect in traveling wave operation is halved and bandwidth is widened. One divider as a unit is designed by Galerkin's method of moments to suppress the reflection and to control the amplitude and the phase of the divided power into two radiating waveguides on both sides of a feed one. Two types of the cross-junction with a different divided power ratio are designed and tested by experiments in 4 GHz band. The mutual coupling effects between two adjacent cross-junctions as cascaded in a feeding waveguide of the array are predicted to be small enough; units designed here are directly applicable for a multiple-way power divider.
Kenji FUKAZAWA Jiro HIROKAWA Makoto ANDO Naohisa GOTO
The authors propose a novel waveguide two-way power divider, named as τ-junction, in a feed waveguide of a single-layer slotted waveguide array antenna. This junction occupies only a small space and is placed in the middle of a cascade of several power dividers. It suppresses the long line effect and widens the bandwidth of the feed waveguide. The junction has two inductive walls; one is for suppressing the reflection and the other is for controlling the ratio of divided power to the two output ports. Analysis using Galerkin's method of moments is verified by experiments of a 4 GHz-band model. We install the junctions in a 12 GHz-band single-layer slotted waveguide array. The gain reduction at the band-edge is suppressed.
Tsukasa TAKAHASHI Jiro HIROKAWA Makoto ANDO Naohisa GOTO
The authors propose a waveguide π-junction with an inductive wall. Galerkin's method of moments is applied to analyze it and small reflection and desired power division ratio is realized. Good agreement between the calculated result and the measured one verifies the design of a unit π-junction. The characteristics of aπ-junction with a wall are almost the same as those of a conventional π-junction with a post. Important advantage of the new π-junction with a wall is that it can be manufactured in the die-cast process of the waveguide while a post in the conventional one must be attached in an additional process. A 16-way power divider consisting of 8 π-junctions is designed at 11.85 GHz and the characteristics are predicted.