The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] subcarrier(72hit)

21-40hit(72hit)

  • Overhead Reduction in Coordinated Beamforming for Multiuser MIMO-OFDM Systems with Limited Feedforward

    Leonel SORIANO-EQUIGUA  Jaime SANCHEZ-GARCIA  Chan-Byoung CHAE  Robert W. HEATH, Jr.  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3168-3171

    This letter proposes a method for choosing the best quantized beamforming vector that represents a subcarrier group, for coordinated beamforming in the downlink of multiuser multiple input multiple output-orthogonal frequency division multiplexing systems. The correlation between subcarriers is exploited for reducing the feedforward overhead, while maximizing the sum rate.

  • The Optimal Subcarrier and Bit Allocation for Multiuser OFDM System: A Dual-Decomposition Approach

    Taehyung PARK  Sungbin IM  

     
    PAPER-Communication Theory and Signals

      Vol:
    E94-A No:9
      Page(s):
    1826-1832

    The advantages of the orthogonal frequency division multiplexing (OFDM) are high spectral efficiency, resiliency to RF interference, lower multi-path distortion and others. To further utilize the vast channel capacity of the multiuser OFDM, one has to find the efficient adaptive subcarrier and bit allocation among users. In this paper, we propose a 0-1 integer programming model formulating the optimal subcarrier and bit allocation problem of the multiuser OFDM. We proved that the continuous relaxation of our formulation is tighter than the previous convex optimization formulation based on perspective function and the Lagrangian dual bound of our formulation is equivalent to the linear programming relaxation bound. The proposed Lagrangian dual is seperable with respect to subcarriers and allows an efficient dual maximization algorithm. We compared the performance of the integer programming formulation and the Lagrangian dual of our formulation and the continuous relaxation and the primal heuristic proposed in [3]. Computer simulation on a system employing M-ary quadrature amplitude modulation (MQAM) assuming a frequency-selective channel consisting of three independent Rayleigh multipaths is carried out with the optimal subcarrier and bit allocation solution generated by the 0-1 integer programming model.

  • Training Sequence Reduction for the Least Mean Square-Blind Joint Maximum Likelihood Sequence Estimation Co-channel Interference Cancellation Algorithm in OFDM Systems

    Zhenyu ZHOU  Takuro SATO  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:5
      Page(s):
    1173-1183

    Due to the reuse factor reduction, the attendant increase in co-channel interference (CCI) becomes the limiting factor in the performance of the orthogonal frequency division multiplexing (OFDM) based cellular systems. In the previous work, we proposed the least mean square-blind joint maximum likelihood sequence estimation (LMS-BJMLSE) algorithm, which is effective for CCI cancellation in OFDM systems with only one receive antenna. However, LMS-BJMLSE requires a long training sequence (TS) for channel estimation, which reduces the transmission efficiency. In this paper, we propose a subcarrier identification and interpolation algorithm, in which the subcarriers are divided into groups based on the coherence bandwidth, and the slowest converging subcarrier in each group is identified by exploiting the correlation between the mean-square error (MSE) produced by LMS and the mean-square deviation (MSD) of the desired channel estimate. The identified poor channel estimate is replaced by the interpolation result using the adjacent subcarriers' channel estimates. Simulation results demonstrate that the proposed algorithm can reduce the required training sequence dramatically for both the cases of single interference and dual interference. We also generalize LMS-BJMLSE from single antenna to receiver diversity, which is shown to provide a huge improvement.

  • Frequency Sharing Mechanism Using Pilot Sensing in OFDMA-Based Cognitive Radio Networks

    Tae-Hwan KIM  Tae-Jin LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    986-996

    Mobile operators need to migrate from 2G to 3G networks in a cost-effective manner. Cognitive radio systems are currently being investigated as a promising solution to achieve spectrum efficiency by allowing coexistence of unlicensed (secondary) networks and licensed (primary) networks. However, conventional mechanisms to operate these systems incur additional complexity and fail to maximize network performance. In this paper, we propose a pilot sensing and frequency selection method with low complexity for OFDMA-based cognitive radio systems. Subject to the interference constraints imposed by the primary network, capacity maximization problems involving both up-link and down-link connections are considered for overall network performance improvement. The throughput and outage probability of the proposed method are evaluated by simulations. Our proposed method shows outstanding performance if the channel varies frequently in the primary network and the frequency reuse factor of the primary network is high.

  • Performance Evaluation of OFDM Amplify-and-Forward Relay System with Subcarrier Permutation

    Enis KOCAN  Milica PEJANOVIC-DJURISIC  Diomidis S. MICHALOPOULOS  George K. KARAGIANNIDIS  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:5
      Page(s):
    1216-1223

    We perform error probability analysis of the uncoded OFDM fixed gain Amplify-and-Forward (AF) relaying system with subcarrier permutation (SCP). Two SCP schemes, named: the best-to-best SCP (BTB SCP) and the best-to-worst SCP (BTW SCP) are considered. Closed-form expressions for the bit error rate (BER) of the above SCP methods are derived. Numerical results manifest that these SCP schemes may outperform one another, depending on the average channel conditions of the links involved. That is, BTB SCP is better at low signal-to-noise ratio (SNR) values, while BTW SCP prevails in the medium and high SNR regime. Thus, it could be concluded that OFDM AF relaying systems may switch from the BTB SCP to BTW SCP in order to achieve optimum BER performance. Moreover, using the derived end-to-end SNR probability density functions (PDF), tight upper bounds for the ergodic capacities of both SCP schemes are obtained.

  • A Sidelobe Suppression Technique by Regenerating Null Signals in OFDM-Based Cognitive Radios

    Tomoya TANDAI  Takahiro KOBAYASHI  

     
    PAPER-Spectrum Sensing

      Vol:
    E92-B No:12
      Page(s):
    3653-3664

    In this paper, a sidelobe suppression technique for orthogonal frequency division multiplexing (OFDM)-based cognitive radios (CR) is proposed. In the OFDM-based CR systems, after the CR terminal executes spectrum sensing, it transmits a CR packet by activating the subcarriers in the frequency bands where no signals are detected (hereinafter, these subcarriers are called "active subcarrier") and by disabling (nulling) the subcarriers in the frequency bands where the signals are detected. In this situation, a problem arises in that the signals that leak from the active subcarriers to the null subcarriers may interfere with the primary systems. Therefore, this signal leakage has to be minimized. In many OFDM-based wireless communication systems, one packet or frame consists of multiple OFDM symbols and the discontinuity between the consecutive OFDM symbols causes the signal leakage to the null subcarriers. In the proposed method, signal leakage to the null subcarriers is suppressed by regenerating null subcarriers in the frequency-domain signal of the whole packet as follows. One CR packet consisting of multiple OFDM symbols having null subcarriers and guard interval (GI) is buffered and oversampled, and then the oversampled signal is Fourier transformed at once and consequently the frequency-domain signal of the packet is obtained. The null subcarriers in the frequency-domain signal are zeroed again, and then the signal is inverse Fourier transformed and transmitted. The proposed method significantly suppresses the signal leakage. The spectral power density, the peak-to-average power ratio (PAPR) and the packet error rate (PER) performances of the proposed method are evaluated by computer simulations and the effectiveness of the proposed method is shown.

  • Efficient Frequency Sharing of Baseband and Subcarrier Coding UHF RFID Systems

    Jin MITSUGI  Yuusuke KAWAKITA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3794-3802

    UHF band passive RFID systems are being steadily adopted by industries because of their capability of long range automatic identification with passive tags. For an application which demands a large number of readers located in a limited geographical area, referred to as dense reader mode, interference rejection among readers is important. The coding method, baseband or subcarrier coding, in the tag-to-reader communication link results in a significant influence on the interference rejection performance. This paper examines the frequency sharing of baseband and subcarrier coding UHF RFID systems from the perspective of their transmission delay using a media access control (MAC) simulator. The validity of the numerical simulation was verified by an experiment. It is revealed that, in a mixed operation of baseband and subcarrier systems, assigning as many channels as possible to baseband system unless they do not exploit the subcarrier channels is the general principle for efficient frequency sharing. This frequency sharing principle is effective both to baseband and subcarrier coding systems. Otherwise, mixed operation fundamentally increases the transmission delay in subcarrier coding systems.

  • Capacity Enhancing Subcarrier Allocation in OFDM Systems with Fractional Frequency Reuse

    Seung Su HAN  Jongho PARK  Tae-Jin LEE  Hyun Gi AHN  Kyunghun JANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2538-2541

    Some wireless OFDMA communication systems support the frequency reuse factor of 1. In order to reduce co-channel interference (CCI) caused by neighbor cells, the fractional frequency reuse (FFR) can be employed. A promising frequency partitioning policy and subcarrier allocation for FFR are essential. In this letter, we employ an efficient frequency partitioning mechanism with less interference and propose an efficient subcarrier allocation algorithm to maximize the sum of users capacity under FFR. We show that the proposed algorithm has higher spectral efficiency than the conventional method as well as significantly high system fairness.

  • Interference Reduction Scheme for UHF Passive RFID Systems Using Modulation Index Control

    Yoshinori TANAKA  Iwao SASASE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1272-1281

    The performance of a UHF-band passive RFID system in a dense multi-reader environment is limited by both the reader-to-reader interference and reader-to-tag interference. In this paper, first, we propose a combination of subcarrier modulation backscattering and reduced carrier frequency offset among readers to reduce both the reader-to-reader interference and the reader-to-tag interference. Then, we propose a new distributed modulation index control scheme using the readers' estimation of the tag's SINR in order to further reduce the reader-to-tag interference. By adaptively controlling each reader's transmission modulation index, the asymmetric reader-to-tag interference can be effectively controlled to satisfy the required SINR of tags. Computer simulations show that the proposed scheme can reduce the minimum required inter-reader distance or increase the number of concurrently operable readers in dense multi-reader environments, especially when there are large differences in the levels of reader-to-tag interference. We show some optimizations of the proposed scheme for practical RFID applications. We also propose a bandwidth efficient modulation scheme for reader transmission which is suitable for the proposed modulation index control scheme.

  • A Goal Programming Approach for Resource Allocation Considering Client Demands in a Multiuser OFDMA Downlink System

    Younggoo HAN  Woochul SHIM  Sehun KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1376-1379

    This study investigates subcarrier and power allocation schemes in an OFDMA downlink system. To consider client demands, a goal programming approach is proposed. The proposed algorithm minimizes the weighted sum of each client's dissatisfaction index. Simulations show that the sum of dissatisfaction indices can be reduced significantly.

  • Efficient Resource Allocation for Multiclass Services in Multiuser OFDM Systems

    Jae Soong LEE  Jae Young LEE  Soobin LEE  Hwang Soo LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:2
      Page(s):
    533-543

    Although each application has its own quality of service (QoS) requirements, the resource allocation for multiclass services has not been studied adequately in multiuser orthogonal frequency division multiplexing (OFDM) systems. In this paper, a total transmit power minimization problem for downlink transmission is examined while satisfying multiclass services consisting of different data rates and target bit-error rates (BER). Lagrangian relaxation is used to find an optimal subcarrier allocation criterion in the context of subcarrier time-sharing by all users. We suggest an iterative algorithm using this criterion to find the upper and lower bounds of optimal power consumption. We also propose a prioritized subcarrier allocation (PSA) algorithm that provides low computation cost and performance very close to that of the iterative algorithm. The PSA algorithm employs subcarrier selection order (SSO) in order to decide which user takes its best subcarrier first over other users. The SSO is determined by the data rates, channel gain, and target BER of each user. The proposed algorithms are simulated in various QoS parameters and the fading channel model. Furthermore, resource allocation is performed not only subcarrier by subcarrier but also frequency block by frequency block (comprises several subcarriers). These extensive simulation environments provide a more complete assessment of the proposed algorithms. Simulation results show that the proposed algorithms significantly outperform existing algorithms in terms of total transmit power consumption.

  • Improved Subcarrier Allocation in Multi-User OFDM Systems

    Won Joon LEE  Jaeyoon LEE  Dongweon YOON  Sang Kyu PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:12
      Page(s):
    4030-4033

    In a multi-user orthogonal frequency division multiplexing (OFDM) system, efficient resource allocation is required to provide service to more users. In this letter, we propose an improved subcarrier allocation algorithm that can increase the spectral efficiency and the number of total transmission bits even if the number of users is too large. The proposed algorithm is divided into two stages. In the first stage, a group of users who are eligible for services is determined by using the bit error rate (BER), the users' minimum data rate requirement, and channel information. In the second stage, subcarriers are first allocated to the users on the basis of channel state, and then the reallocation is performed so that resource waste is minimized. We show that the proposed algorithm outperforms the conventional one on the basis of outage probability, spectral efficiency, and the number of total transmission bits through a computer simulation.

  • Frequency Shifted Optical SSB Modulation Scheme and Its Application to SCM Transmission

    Toshihito FUJIWARA  Koji KIKUSHIMA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:12
      Page(s):
    4003-4005

    We propose frequency shifted optical single sideband (OSSB), a novel OSSB modulation scheme. It uses a continuous wave to up-convert the source signal, and the signal and the continuous wave then undergo suppressed carrier OSSB modulation simultaneously. This scheme inherently has no unwanted sidebands, even if the suppressed carrier OSSB modulator is defective. Experiments of 12 GHz RF signal transmission confirm that it achieves 2.4 dB relaxation in chromatic dispersion power fading under the condition of 15 dB SSR.

  • An Adaptive User Grouping and Subcarrier Allocation Algorithm for Grouped MC-CDMA Systems

    Jinri HUANG  Zhisheng NIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    947-950

    In MC-CDMA systems, subcarriers can be shared by different users. In this letter, we exploit the shared nature of subcarriers and propose a user grouping and subcarrier allocation algorithm for grouped MC-CDMA systems. The scheme aims at maximizing the total system throughput while providing bandwidth-fairness among groups. Simulation results are given to demonstrate the performance of the proposed algorithm in terms of sum capacity and per-user throughput.

  • Optical Beat Noise Reduction Using FM to AM Conversion of Injection-Locked FP-Laser Diode in Reflective SOA Based WDM/SCM-Passive Optical Networks

    Yong-Yuk WON  Hyuk-Choon KWON  Sang-Kook HAN  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:10
      Page(s):
    2953-2956

    A new scheme for reducing optical beat interference noise in a reflective semiconductor optical amplifier based wavelength division multiplexed/subcarrier multiplexing -- passive optical network is proposed. This method uses an Fabry Perot laser locked by modulated lights from optical network units in a central office. As an experimental verification, it is reported that carrier to noise ratio is enhanced by 10 dB and power penalty is improved by 16 dB.

  • Low Complexity Resource Allocation Algorithm by Multiple Attribute Weighing and User Ranking for OFDMA Systems

    Maduranga LIYANAGE  Iwao SASASE  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:8
      Page(s):
    2006-2015

    We propose an effective subcarrier allocation scheme for multiuser orthogonal frequency division multiple access (OFDMA) system in the downlink transmission with low computational complexity. In the proposed scheme, by taking multiple attributes of a user's channel, such as carrier gain decrease rate and variation from the mean channel gain of the system, to determine a rank for the user, subcarriers are then allocated depending on the individual user's rank. Different channel characteristics are used to better understand a user's need for subcarriers and hence determine a priority for the user. We also adopt an attribute weighing scheme to enhance the performance of the proposed scheme. The scheme is computationally efficient, since it avoids using iterations for the algorithm convergence and also common water-filling calculations that become more complex with increasing system parameters. Low complexity is achieved by allocating subcarriers to users depending on their determined rank. Our proposed scheme is simulated in comparison with other mathematically efficient subcarrier allocation schemes as well as with a conventional greedy allocation scheme. It is shown that the proposed method demonstrates competitive results with the simulated schemes.

  • A 2-D Subcarrier Allocation Scheme for Capacity Enhancement in a Clustered OFDM System

    Youngok KIM  Jaekwon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1880-1883

    An adaptive subcarrier allocation (SA) algorithm is proposed for both the enhancement of system capacity and the practical implementation in a clustered OFDM system. The proposed algorithm is based on the two dimensional comparison of the channel gain in both rows and columns of the channel matrix to achieve higher system capacity. Simulation results demonstrate that the proposed algorithm outperforms the SA algorithm based on only one dimensional comparison in terms of system capacity, and furthermore, it performs as well as the optimal SA algorithm at relatively low computational cost.

  • Efficient Subcarrier and Power Allocation Algorithm in OFDMA Uplink System

    Ki Hoon KWON  Younggoo HAN  Sehun KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    368-371

    This letter focuses on uplink transmission in OFDMA systems. A subcarrier and power allocation problem is formulated that maximizes the throughput of OFDMA uplink systems while satisfying each user's power constraints. A greedy algorithm known to be the most efficient algorithm for this problem can provide a high quality near-optimal solution, but has the disadvantage of incurring a long computation time. As this problem should be solved in a real-time environment, computation time is a very important performance measure of algorithms. In this letter, a computationally efficient algorithm that provides a nearly identical quality, near-optimal solution as the greedy algorithm but requires less than 10% of the computation time of the greedy algorithm is proposed.

  • RoF Technologies for In-Building Wireless Systems

    Seongtaek HWANG  Hoon KIM  Byungjik KIM  Sung Kee KIM  Jaehoon LEE  Hanlim LEE  Yonggyoo KIM  Gyuwoong LEE  Sangho KIM  Yunje OH  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    345-350

    This paper reports on a fiber-optic system for in-building wireless communication/broadcast systems developed in Samsung Electronics. Our system delivers the third generation mobile system, satellite-digital multimedia broadcast, and wireless local access network services over a single strand of single-mode fiber or multi-mode fiber. We present the design issue and experimental results of the radio-over-fiber link.

  • Channel Estimation in Comb-Type Pilot Arrangements for OFDM Systems with Null Subcarriers

    Jihyung KIM  Sangho NAM  Daesik HONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3458-3462

    This letter analyzes the degradation effect of null subcarriers in orthogonal frequency domain multiplexing (OFDM) systems on the time-domain maximum likelihood (ML) estimation performance. The analysis is used as the basis for a proposal for a channel estimation method that can overcome performance degradation caused by null subcarriers. The accuracy of the proposed method is confirmed by the numerical analysis.

21-40hit(72hit)