The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sum of absolute difference(5hit)

1-5hit
  • Hardware-Oriented Early Detection Algorithms for 44 and 88 All-Zero Blocks in H.264

    Qin LIU  Yiqing HUANG  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1063-1071

    H.264 is the latest HDTV video compression standard, which provides a significant improvement in coding efficiency at the cost of huge computation complexity. After transform and quantization, if all the coefficients of the block's residue data are zero, this block is called all-zero block (AZB). Provided that an AZB can be detected early, the process of transform and quantization on an AZB can be skipped, which reduces significant redundant computations. In this paper, a theoretical analysis is performed for the sufficient condition for AZB detection. As a result, a partial sum of absolute difference (SAD) based 44 AZB detection algorithm is derived. And then, a hardware-oriented AZB detection algorithm is proposed by modifying the order of SAD calculation. Furthermore, a quantization parameter (QP) oriented 88 AZB detection algorithm is proposed according to the AZB's statistical analysis. Experimental results show that the proposed algorithm outperforms the previous methods in all cases and achieves major improvement of computation reduction in the range from 6.7% to 42.3% for 44 blocks, from 0.24% to 79.48% for 88 blocks. The computation reduction increases as QP increases.

  • Architecture of a Stereo Matching VLSI Processor Based on Hierarchically Parallel Memory Access

    Masanori HARIYAMA  Haruka SASAKI  Michitaka KAMEYAMA  

     
    PAPER-Digital Circuits and Computer Arithmetic

      Vol:
    E88-D No:7
      Page(s):
    1486-1491

    This paper presents a VLSI processor for high-speed and reliable stereo matching based on adaptive window-size control of SAD(Sum of Absolute Differences) computation. To reduce its computational complexity, SADs are computed using multi-resolution images. Parallel memory access is essential for highly parallel image processing. For parallel memory access, this paper also presents an optimal memory allocation that minimizes the hardware amount under the condition of parallel memory access at specified resolutions.

  • TMR-Based Logic-in-Memory Circuit for Low-Power VLSI

    Akira MOCHIZUKI  Hiromitsu KIMURA  Mitsuru IBUKI  Takahiro HANYU  

     
    PAPER

      Vol:
    E88-A No:6
      Page(s):
    1408-1415

    A tunneling magnetoresistive(TMR)-based logic-in- memory circuit, where storage functions are distributed over a logic-circuit plane, is proposed for a low-power VLSI system. Since the TMR device is regarded as a variable resistor with a non-volatile storage capability, any logic functions with external inputs and stored inputs can be performed by using the TMR-based resistor/transistor network. The combination of dynamic current-mode circuitry and a TMR-based logic network makes it possible to perform any switching operations without steady current, which results in power saving. A design example of an SAD unit for MPEG encoding is discussed, and its advantages are demonstrated.

  • Low-Power Motion-Vector Detection VLSI Processor Based on Pass-Gate Logic with Dynamic Supply-Voltage/Clock-Frequency Scaling

    Akira MOCHIZUKI  Daisuke NISHINOHARA  Takahiro HANYU  

     
    PAPER

      Vol:
    E87-C No:11
      Page(s):
    1876-1883

    A new circuit technique based on pass-gate logic with dynamic supply-voltage and clock-frequency control is proposed for a low-power motion-vector detection VLSI processor. Since the pass-gate logic style has potential advantages that have small equivalent stray capacitance and small number of short-circuit paths, its circuit implementation makes it possible to reduce the power dissipation with maintaining high-speed switching capability. In case the calculation result is obtained on the way of calculation steps, additional power saving is also achieved by combining the pass-gate logic circuitry with a mechanism that dynamically scales down the supply voltage and the clock frequency while maintaining the calculation throughput. As a typical example, a sum of absolute differences (SAD) unit in a motion-vector detection VLSI processor is implemented and its efficiency in power saving is demonstrated.

  • Multiresolution Motion Estimation with Zerotree Coding Aware Metric

    Yih-Ching SU  Chu-Sing YANG  Chen-Wei LEE  Chin-Shun HSU  

     
    LETTER-Multimedia Systems

      Vol:
    E86-B No:10
      Page(s):
    3152-3155

    In this paper, a new Hierarchical Sum of Double Difference metric, HSDD, is introduced. It is shown, as opposed to conventional Sum of Absolute Difference (SAD) metric, how this zerotree coding aware metric can jointly constrain the motion vector searching for both temporal and spatial (quad-tree) directions under multiresolution motion estimation framework. The reward from the temporal-spatial co-optimization concept of HSDD is that fewer bits are spent later for describing the isolated zeros. The embedded wavelet video coder using HSDD metric was tested with a set of video sequences and the compression performance seems to be promising.