The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] suppression(140hit)

101-120hit(140hit)

  • Interference Suppression Based on Code Grouping and Groupwise Decorrelation in Multirate W-CDMA Downlink

    Won HA  Junghwa BAE  Jinwoo PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3125-3129

    In this paper, we presented a new interference suppression method based on groupwise decorrelation for the multirate wideband-code division multiple access (W-CDMA) downlink. Code grouping in the proposed method is performed according to the correlation property between the mother code and the child code in the orthogonal variable spreading factor (OVSF) code tree. The decorrelation process based on the grouped codes, so called groupwise decorrelation, is then performed to suppress the interference induced in the downlink propagation. We demonstrate that the proposed method can enhance the performance significantly, with lower computational complexity and higher operational efficiency in which any information about interference users (code, data, amplitude) is not required to know in prior at the detection stage.

  • Performance of Coded Multicarrier Multiple Transmit Antenna DS-CDMA Systems in the Presence of Power Amplifier Nonlinearity

    K.R. Shankar KUMAR  Ananthanarayanan CHOCKALINGAM  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E87-B No:10
      Page(s):
    3032-3043

    While a multicarrier approach of achieving frequency diversity performs well in the presence of partial-band interference, it suffers from the effects of intermodulation distortion (IMD) due to power amplifier (PA) nonlinearity. On the other hand, transmit diversity using multiple transmit antennas has the benefit of no IMD effects, but can suffer from a larger performance degradation due to partial-band interference (e.g., jamming or narrowband signals in a overlay system) compared to the multicarrier approach. Hence, hybrid diversity schemes which use both multicarrier as well as multiple transmit antennas are of interest. Techniques to suppress IMD effects in such hybrid diversity schemes are important. In this paper, we propose and evaluate the performance of a minimum mean square error (MMSE) receiver to suppress the intermodulation distortion in a coded multicarrier multiple transmit antenna (P transmit antennas) DS-CDMA system with M subcarriers on each transmit antenna, for both BPSK and QPSK modulation. The system uses rate-1/M convolutional coding, interleaving and space-time coding. We compare the performance of a (M = 4,P = 2) scheme and a (M = 2,P = 4) scheme, both having the same diversity order. We show that the proposed MMSE receiver effectively suppresses the IMD effects, thus enabling to retain better antijamming capability without much loss in performance due to IMD effects.

  • Novel Two Step Background Suppression for 2-D LWIR Application

    Doo Hyung WOO  Sang Gu KANG  Hee Chul LEE  

     
    LETTER-Electronic Circuits

      Vol:
    E87-C No:9
      Page(s):
    1649-1651

    A readout circuit involving new two step current mode background suppression is studied for 2-dimensional long wavelength infrared focal plane arrays (LWIR FPA's). Buffered direct injection (BDI) and feedback amplifier structure are adopted for input circuit and background suppression circuit, respectively. The pixel circuit is simple and has very small skimming error less than 0.1%. Enough calibration range over 50% as well as long integration time over 1.75 ms can be obtained using this readout circuit.

  • Relay Contacts of Multi-Electrodes with Timely Controlled Operation

    Yu YONEZAWA  Noboru WAKATSUKI  

     
    PAPER-Contactor and Relay

      Vol:
    E87-C No:8
      Page(s):
    1324-1328

    We propose a new electric contact device that greatly improves arc discharge characteristics. Electric contact functions are divided into an energizing operation and a switching operation. A capacitor is connected in series to a contact for switching contact. Using two conventional relay contacts, no arc operation is confirmed for a 42 V/3 A break operation. Contact resistances are measured over many operations, and the surfaces of electrodes are observed. A chip capacitor is arranged at one side of the contact electrodes of a twin relay, confirming the possibility of miniaturization.

  • A Fast Blind Multiple Access Interference Reduction in DS/CDMA Systems Based on Adaptive Projected Subgradient Method

    Renato L. G. CAVALCANTE  Isao YAMADA  Kohichi SAKANIWA  

     
    PAPER-Signal Processing for Communications

      Vol:
    E87-A No:8
      Page(s):
    1973-1980

    This paper presents a novel blind multiple access interference (MAI) suppression filter in DS/CDMA systems. The filter is adaptively updated by parallel projections onto a series of convex sets. These sets are defined based on the received signal as well as a priori knowledge about the desired user's signature. In order to achieve fast convergence and good performance at steady state, the adaptive projected subgradient method (Yamada et al., 2003) is applied. The proposed scheme also jointly estimates the desired signal amplitude and the filter coefficients based on an approximation of an EM type algorithm, following the original idea proposed by Park and Doherty, 1997. Simulation results highlight the fast convergence behavior and good performance at steady state of the proposed scheme.

  • On the Relation between Ordering Metrics for ZF and MMSE Successive Detection in MIMO Systems

    Anass BENJEBBOUR  Susumu YOSHIDA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    2021-2027

    Multiple-input multiple-output (MIMO) systems can improve the spectral efficiency of a wireless link, by transmitting several data streams simultaneously from different transmit antennas. However, at the receiver, multi-stream detection is needed for extracting the transmitted data streams from the received signals. This letter considers ordered successive detection (OSD) for multi-stream detection. OSD consists of several stages, and at each stage only one data stream is chosen to be detected among the remaining streams according to a specified ordering metric. OSD has been formulated using both the zero forcing (ZF) and minimum mean square error (MMSE) criteria. This letter clarifies the reason behind the superiority of OSD using the MMSE criterion to OSD using the ZF criterion through the investigation of the relation between their ordering metrics. For uncorrelated MIMO channels, we show that both ordering metrics yield the same performance for OSD using either ZF or MMSE criterion. Accordingly, the superiority of OSD using the MMSE criterion to OSD using the ZF criterion is clarified to be a direct result of the inherent superiority of MMSE nulling to ZF nulling, and to be independent of the ordering operation. Performance comparisons of OSD and maximum likelihood detection are also given for modulation schemes of different sizes.

  • Delay Aware Two-Step Timers for Large Groups Scalability

    Achmad Husni THAMRIN  Hidetaka IZUMIYAMA  Hiroyuki KUSUMOTO  Jun MURAI  

     
    PAPER-Implementation and Operation

      Vol:
    E87-B No:3
      Page(s):
    437-444

    This paper investigates modified random timers based on uniform and exponentially distributed timers for feedback scalability for large groups. We observe the widely-used probability distribution functions and propose new ones that are aware of network delays. The awareness of network delays of our proposed modified p.d.fs proves to be able to achieve lower expected number of messages compared to the original ones given that the parameters are optimized for the network variables: the number of receivers, and the network delay. In our analysis we derive an equation to estimate the optimized parameter based on these network variables. We also simulate the p.d.fs for heterogenous network delays and find that each receiver only needs to be aware of its network delay.

  • Thermal Stability of Stacked High-κ Dielectrics on Silicon and Its Improvement by Helium Annealing

    Kouichi MURAOKA  

     
    PAPER

      Vol:
    E87-C No:1
      Page(s):
    9-16

    Thermal stability of stacked high-κ dielectrics, especially ZrO2, HfO2 and ZrSiO4 /SiO2 layered structures, on silicon has been investigated in terms of ultrahigh vacuum (UHV), 1 Torr N2 and helium (He) gas annealing with controlled oxygen partial pressure (PO2) at 920. Comparison of 2 nm and 20 nm ZrO2 films under UHV annealing revealed that the trigger of silicidation is the contact of ZrO2, SiO and Si accompanying disappearance of interfacial SiO2 layer due to SiO desorption. In the contact position, a small amount of SiO gas can easily change ZrO2 to ZrSi2. This reaction model is also applicable to the silicidation of HfO2 and ZrSiO4, at not only stacked high-κ film/Si substrate interface, but also at gate poly-Si/high-κ film interface. Moreover, comparison of UHV, N2 and He annealing with controlled PO2 revealed that the optimal PO2 ranges in He at which the thermal stability of layered structure can be achieved are wider than those in UHV and N2. This result suggests that He gas physically may obstruct SiO creation due to the quenching of atomic vibration at degradation-prone sites in the SiO2 /Si interface, thus reducing probability of bond breaking process, which is the first step of silicidation.

  • Signal Space Whitening MLSE with a Multibeam Adaptive Array

    Akihito HANAKI  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2592-2599

    Cochannel interference and multipath propagation reduce the performance of mobile communication systems. Multi-input MLSE with whitening processing can mitigate the influence of the interference and provide path diversity gain. In conventional considerations, however, the required complexity rapidly rises with the number of array elements. In this paper, we propose multi-input MLSE that whitens error signals in the signal space by using a multibeam adaptive array. This scheme can reduce the computational load of multi-input MLSE than the conventional type when using a large-element array. The results of an analysis show that the proposed type is equivalent to conventional one in the sense of the metric and provides less computational complexity.

  • An Experimental Investigation of Interference Suppression in Direct Optical Switching CDM Radio-on-Fiber System

    Takeshi HIGASHINO  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER-Photonic Links for Wireless Communications

      Vol:
    E86-C No:7
      Page(s):
    1159-1166

    This paper describes the experimental approach of the Direct Optical Switching (DOS) CDM Radio-on-Fiber (RoF) system. Improved carrier-to-interference ratio (CIR) performance by using an Optical Polarity Reversing Correlator (OPRC) in comparison to using a single switch decoder is experimentally obtained. In addition, CIR performance deterioration due to degradation of the extinction ratio of the optical switch decoder is clarified from the theoretical and experimental viewpoints. Finally, we confirmed that CIR performance is improved more by using an M-sequence whose weight is even numbered than by using an odd numbered one.

  • Experimental Evaluation of Coherent Adaptive Antenna Array Diversity Receiver Employing Optical Fiber Interface in IF Stage

    Taisuke IHARA  Hidekazu TAOKA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1676-1688

    This paper investigates based on laboratory experiments the multiuser interference suppression effect of the coherent adaptive antenna array diversity (CAAAD) receiver employing an optical fiber feeder in the intermediate frequency (IF) stage, aiming at the practical use of adaptive antenna array beam forming techniques based on the W-CDMA air interface. We employed a configuration in which the optical fiber conversion, i.e., electrical-to-optical (E/O) conversion (vice versa (O/E)), is performed on a received signal amplified by an automatic gain control (AGC) amplifier in the IF stage, to abate the impact of the noise component generated by the E/O (O/E) converters. We first show by computer simulation the superiority of the optical fiber conversion in the IF stage to that in the radio frequency (RF) stage based on the achievable bit error rate (BER) performance. Furthermore, experimental results elucidate that the loss in the required transmit signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) of the implemented CAAAD receiver at the average BER of 10-3 employing the optical fiber feeders in the IF stage compared to that with coaxial cables is within a mere 0.2 dB (six antennas, three users, two-path Rayleigh fading channel model, and the ratio of the target signal energy per bit-to-interference power spectrum density ratio (Eb/I0) of the desired user to that of the interfering users for fast transmission power control (TPC) is ΔEb/I0=-15 dB).

  • Multistage Interference Canceller Combined with Adaptive Array Antenna for DS-CDMA System

    Kazuto YANO  Shoichi HIROSE  Susumu YOSHIDA  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1603-1610

    In order to increase the capacity of a DS-CDMA system, several kinds of interference suppression techniques have been studied, such as multiple access interference (MAI) cancellers and adaptive array antennas. However, their performance tends to degrade in high traffic-load situations. To compensate for the degradation, a receiver cascading an adaptive array antenna and a multistage parallel interference canceller (PIC) is studied in this paper. This receiver first uses an adaptive array antenna to suppress interference signals spatially, and uses a multistage PIC to suppress in-beam interference effectively. The performance of the cascaded receiver is evaluated with two schemes for antenna weight generation by computer simulations assuming a Rayleigh-distributed L-path channel. When antenna weights are generated for each user by an LMS algorithm, the cascaded receiver has shown better performance at the cost of a large number of pilot symbols and symbol by symbol weight update. Its performance degradation is 2.8 dB at the BER of 10-4 even when the number of users increases from one to 24. On the other hand, when antenna weights are generated for each path by a DMI algorithm, its performance is degraded due to the inaccurate weight generation which occurs when the SINR of the desired signal is small. This degradation can be mitigated by using all signals of the desired user received by all antenna patterns of desired user for RAKE combining when the difference among arrival angles of the paths of the desired user is small.

  • Experimental Study on Fully Integrated Active Guard Band Filters for Suppressing Substrate Noise in Sub-Micron CMOS Processes for System-on-a-Chip

    Keiko Makie-FUKUDA  Toshiro TSUKADA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:1
      Page(s):
    89-96

    This paper describes fully integrated active guard band filters for suppressing the substrate coupling noise and their noise suppression effect measured by test chip experiments. The noise cancellation circuit of the active guard band filters simply consists of an inverter and a source follower. The substrate noise suppression effect was measured by using a test chip fabricated in a 0.18 µm CMOS triple-well process for system-on-a-chip. The noise with the filter was less than 5% of that without the filter and the noise suppression effect was observed from 1 MHz to 200 MHz by the statistical measurement of the voltage comparator. The noise suppression effect was also observed for actual digital switching noise produced by digital inverters. Configuration of the active guard band filter was investigated by simulation and it is shown that high and uniform noise suppression effect is achieved by placing the guard bands in the L-shape around the target triple-well area on the p-substrate.

  • An Adaptive MSINR Filter for Co-channel Interference Suppression in DS/CDMA Systems

    Yutaro MINAMI  Kohei OTAKE  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:1
      Page(s):
    235-243

    Many types of adaptive algorithms based on the MMSE criterion for co-channel interference suppression in DS/CDMA systems have been studied in great detail. However, these algorithms have such a problem that the training speed is greatly dropped under the strong near-far problem. In this paper, we propose and analyze an adaptive filter based on the Maximum Signal to Interference and Noise Ratio (MSINR) criterion, called adaptive MSINR filter. This filter is basically equivalent to the adaptive filter based on the MMSE criterion. However, due to the structual difference, the convergence speed is greatly improved. Specifically, the de-spreading vector in this filter is so renewed as to maximize the Signal to Interference and Noise Ratio (SINR) by minimizing the de-spread interference and noise power under the condition that the de-spread desired signal power keeps constant. So the proposed filter uses the estimated interference and noise signal calculated by subtracting the estimated desired signal from the received signal. It is just the reason why the adaptive MSINR filter shows remarkable convergence speed. And to satisfy the constant signal power condition, the projection matrix onto the orthogonal complement of the desired signal space is used for the de-spreading vector. For the proposed filter, we analyze the convergence modes and also investigate the de-spread interfernce and noise power for calculating the theoretical SINR curve. Then, we conduct some computer simulations in order to show the difference between this filter and the conventional one in terms of the SINR convergence speed. As the result, we confirm that the adaptive filter based on the MSINR criterion achieves significant progress in terms of the SINR convergence speed.

  • Experiments on Coherent Adaptive Antenna Array Diversity Receiver Based on Antenna-Weight Generation Common to Paths in W-CDMA Reverse Link

    Hidekazu TAOKA  Shinya TANAKA  Taisuke IHARA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    191-205

    This paper presents laboratory and field experimental results of the coherent adaptive antenna array diversity (CAAAD) receiver employing receiver antenna-weight generation common to all Rake-combined paths (hereafter path-common weight generation method) in the W-CDMA reverse link, in order to elucidate the suitability of the path-common weight generation method in high-elevation antenna environments such as cellular systems with a macrocell configuration. Laboratory experiments using multipath fading simulators and RF phase shifters elucidate that even when the ratio of the target Eb/I0 of the desired to interfering users is Δ Eb/I0=-12 dB, the increase in the average transmit Eb/N0 employing the CAAAD receiver coupled with fast transmission power control (TPC) using outer-loop control from that for Δ Eb/I0=0 dB is within only 1.0 dB owing to the accurate beam and null steering associated with fast TPC. Furthermore, field experiments demonstrate that the required transmission power at the average block error rate (BLER) of 10-2 employing the CAAAD receiver with four antennas is reduced by more than 2 dB compared to that using a four-branch space diversity receiver using maximum ratio combining (MRC) with the fading correlation between antennas of 0 when Δ Eb/I0=-15 dB and that the loss in the required transmission power of the CAAAD receiver in the same situation as that in a single-user environment is approximately 1 dB. The field experimental results in an actual propagation environment suggest that the CAAAD receiver is effective in suppressing multiple access interference, thus decreasing the required transmission power when the gap in the direction of arrival between the desired user and interfering users is greater than approximately 20 degrees.

  • Investigation of Channel Estimation Method for Adaptive Antenna Array Transmit Diversity in W-CDMA Forward Link

    Shinya TANAKA  Mamoru SAWAHASHI  Heiichi YAMAMOTO  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2630-2639

    This paper investigates an accurate channel estimation method using the common pilot channel (CPICH) in addition to a dedicated pilot channel (PICH) when the fading correlation between the dedicated PICH and CPICH is high, and clarifies the area in which the proposed channel estimation method is effective for adaptive antenna array transmit diversity (AAA-TD) in the forward link. Computer simulation results elucidate that although a more precise channel estimation is possible by using the primary-CPICH (P-CPICH) transmitted from an omni-directional antenna in addition to the dedicated PICH for the area where the distance, d, between a base station and a mobile terminal is longer than approximately 200 m, no improvement is obtained for the area where the value of d is shorter than approximately 200 m. Meanwhile, by employing the secondary-CPICH (S-CPICH) transmitted with several directional beams in addition to the dedicated PICH, the required average received Eb/N0 at the average BER of 10-3 is decreased by approximately 0.4 (0.2-0.4) dB compared to the channel estimation method using only the dedicated PICH regardless of the value of d when the number of antennas is 4 (8).

  • An Eigenstructure Approach for the Robust Interference Canceler

    Ann-Chen CHANG  

     
    LETTER-Antenna and Propagation

      Vol:
    E85-B No:11
      Page(s):
    2544-2546

    Using eigenstructure approach to form interference canceler is very sensitive to pointing error, especially when the interference number is overestimated. This Letter presents an effective technique to correct the pointing error by the projection matrix of noise subspace. Based on the corrected steering angle, a proper blocking matrix of the eigenstructure interference canceler can be obtained to suppress the leakage of desired signal. Therefore, signal cancellation does not occur, even the interference number is overestimated in constructing the interference subspace.

  • Multiuser Interference Suppression Based on Complementally Transformed Minimum Variance Technique in Spread Spectrum Communications

    Ann-Chen CHANG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:8
      Page(s):
    1525-1532

    In this paper, a new adaptive method is suggested using the complementally transformed minimum variance technique for the purpose of suppressing interference in additive white and colored Gaussian noise channels. The method is based on interference suppression by way of the resulting projection weight. The multiple access causes an interference problem in the code-division multiple access systems. An efficient adaptive algorithm should be used to suppress this interference for the improvement of system performance. Analytical and simulation results show that the new adaptive method has fast convergence rate and offers significant performance gain over the conventional detector, the MMSE detector, and the linear decorrelator. Finally, multipath fading induced performance loss, which leads to error probability floor, is established for the proposed method with combining schemes and shown by computer simulation.

  • Noise Suppression with High Speech Quality Based on Weighted Noise Estimation and MMSE STSA

    Masanori KATO  Akihiko SUGIYAMA  Masahiro SERIZAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:7
      Page(s):
    1710-1718

    A noise suppression algorithm with high speech quality based on weighted noise estimation and MMSE STSA is proposed. The proposed algorithm continuously updates the estimated noise by weighted noisy speech in accordance with an estimated SNR. The spectral gain is modified with the estimated SNR so that it can better utilize the improvement in noise estimation. With a better noise estimate, a more correct SNR is obtained resulting in the enhanced speech with low distortion. Subjective evaluation results show that five-grade mean opinion scores of the new algorithm with and without a speech codec are improved by as much as 0.35 and 0.40 respectively, compared with either the original MMSE STSA or the EVRC noise suppression algorithm.

  • Dimension-Reduced MMSE Receiver for DS-CDMA Systems over Multipath Channels

    Kuk-Jin SONG  Dong-Jo PARK  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:2
      Page(s):
    554-558

    A new dimension-reduced interference suppression scheme is proposed for DS-CDMA systems over multipath channels. The proposed receiver resolves the problems of interference and multipath effects without needing to estimate the channel and training sequences. The minimum mean squared error (MMSE) criterion is used to obtain an algorithm to cancel the interference of each path. The MMSE filter is composed of two stages based on multipath effects. The proposed receiver has low complexity without great degradation of performance compared with the full dimension MMSE receiver with known channel information. Simulation results show that the proposed receiver converges to the optimal value rapidly because of its reduced dimension.

101-120hit(140hit)