The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] suppression(140hit)

21-40hit(140hit)

  • Iterative Reduction of Out-of-Band Power and Peak-to-Average Power Ratio for Non-Contiguous OFDM Systems Based on POCS

    Yanqing LIU  Liang DONG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/02/17
      Vol:
    E100-B No:8
      Page(s):
    1489-1497

    Non-contiguous orthogonal frequency-division multiplexing (OFDM) is a promising technique for cognitive radio systems. The secondary users transmit on the selected subcarriers to avoid the frequencies being used by the primary users. However, the out-of-band power (OBP) of the OFDM-modulated tones induces interference to the primary users. Another major drawback of OFDM-based system is their high peak-to-average power ratio (PAPR). In this paper, algorithms are proposed to jointly reduce the OBP and the PAPR for non-contiguous OFDM based on the method of alternating projections onto convex sets. Several OFDM subcarriers are selected to accommodate the adjusting weights for OBP and PAPR reduction. The frequency-domain OFDM symbol is projected onto two convex sets that are defined according to the OBP requirements and the PAPR limits. Each projection iteration solves a convex optimization problem. The projection onto the set constrained by the OBP requirement can be calculated using an iterative algorithm which has low computational complexity. Simulation results show good performance of joint reduction of the OBP and the PAPR. The proposed algorithms converge quickly in a few iterations.

  • Improving the Performance of DOA Estimation Using Virtual Antenna in Automotive Radar

    Seokhyun KANG  Seongwook LEE  Jae-Eun LEE  Seong-Cheol KIM  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/25
      Vol:
    E100-B No:5
      Page(s):
    771-778

    In this paper, the virtual antenna technique is applied to a single input multiple output (SIMO) radar system to enhance the performance of the conventional beamforming direction of arrival (DOA) estimation method. Combining the virtual array generated by the interpolated array technique and the real array, the angular resolution of the DOA estimation algorithm is improved owing to the extended number of antennas and aperture size. Based on the proposed interpolation technique, we transform the position of the antenna elements in a uniform linear array (ULA) to the arbitrary positions to suppress the grating lobe and side lobe levels. In simulations, the pseudo spectrum of the Bartlett algorithm and the root mean square error (RMSE) of the DOA estimation with the signal-to-noise ratio (SNR) are analyzed for the real array and the proposed virtually extended array. Simulation results show that the angular resolution of the proposed array is better than that of the real array using the same aperture size of array and the number of antennas. The proposed technique is verified with the practical data from commercialized radar system.

  • Mainlobe Anti-Jamming via Eigen-Projection Processing and Covariance Matrix Reconstruction

    Zhangkai LUO  Huali WANG  Wanghan LV  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    1055-1059

    In this letter, a novel mainlobe anti-jamming method via eigen-projection processing and covariance matrix reconstruction is proposed. The present work mainly focuses on two aspects: the first aspect is to obtain the eigenvector of the mainlobe interference accurately in order to form the eigen-projection matrix to suppress the mainlobe interference. The second aspect is to reconstruct the covariance matrix which is uesd to calculate the adaptive weight vector for forming an ideal beam pattern. Additionally, the self-null effect caused by the signal of interest and the sidelobe interferences elimination are also considered in the proposed method. Theoretical analysis and simulation results demonstrate that the proposed method can suppress the mainlobe interference effectively and achieve a superior performance.

  • Clutter Suppression Method of Iron Tunnel Using Cepstral Analysis for Automotive Radars

    Han-Byul LEE  Jae-Eun LEE  Hae-Seung LIM  Seong-Hee JEONG  Seong-Cheol KIM  

     
    PAPER-Sensing

      Pubricized:
    2016/08/17
      Vol:
    E100-B No:2
      Page(s):
    400-406

    In this paper, we propose an efficient clutter suppression algorithm for automotive radar systems in iron-tunnel environments. In general, the clutters in iron tunnels makes it highly likely that automotive radar systems will fail to detect targets. In order to overcome this drawback, we first analyze the cepstral characteristic of the iron tunnel clutter to determine the periodic properties of the clutters in the frequency domain. Based on this observation, we suggest for removing the periodic components induced by the clutters in iron tunnels in the cepstral domain by using the cepstrum editing process. To verify the clutter suppression of the proposed method experimentally, we performed measurements by using 77GHz frequency modulated continuous waveform radar sensors for an adaptive cruise control (ACC) system. Experimental results show that the proposed method is effective to suppress the clutters in iron-tunnel environments in the sense that it improves the early target detection performance for ACC significantly.

  • Call Admission Controls in an IP-PBX Considering the End-to-End QoS of VoIP Calls with Silence Suppression

    Ji-Young JUNG  Jung-Ryun LEE  

     
    PAPER-Network System

      Pubricized:
    2016/08/09
      Vol:
    E100-B No:2
      Page(s):
    280-292

    A statistical call admission control (CAC) allows more calls with on-off patterns to be accepted and a higher channel efficiency to be achieved. In this paper, we propose three statistical CACs for VoIP calls with silence suppression considering the priority of each VoIP call, where the call priority is determined by the call acceptance order in an IP-PBX. We analyse the packet loss rates in an IP-PBX under the proposed strategies and express the end-to-end QoS of a VoIP call as an R-factor in a VoIP service network. The performances of the proposed CACs are evaluated using the maximum allowable number of VoIP calls while satisfying the end-to-end QoS constraint, the average QoS of acceptable VoIP calls and the channel efficiency. The advantage of the proposed statistical CACs over the non-statistical CAC is verified in terms of these three performance metrics. The results indicate that a trade-off is possible in that the maximum allowable number of VoIP calls in an IP-PBX increases as the average QoS of acceptable VoIP calls is lowered according to the proposed statistical CAC used. Nevertheless, the results allow us to verify that the channel efficiencies are the same for all the statistical CACs considered.

  • Digital Multiple Notch Filter Design with Nelder-Mead Simplex Method

    Qiusheng WANG  Xiaolan GU  Yingyi LIU  Haiwen YUAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:1
      Page(s):
    259-265

    Multiple notch filters are used to suppress narrow-band or sinusoidal interferences in digital signals. In this paper, we propose a novel optimization design technique of an infinite impulse response (IIR) multiple notch filter. It is based on the Nelder-Mead simplex method. Firstly, the system function of the desired notch filter is constructed to form the objective function of the optimization technique. Secondly, the design parameters of the desired notch filter are optimized by Nelder-Mead simplex method. A weight function is also introduced to improve amplitude response of the notch filter. Thirdly, the convergence and amplitude response of the proposed technique are compared with other Nelder-Mead based design methods and the cascade-based design method. Finally, the practicability of the proposed notch filter design technique is demonstrated by some practical applications.

  • Adaptive Sidelobe Cancellation Technique for Atmospheric Radars Containing Arrays with Nonuniform Gain

    Taishi HASHIMOTO  Koji NISHIMURA  Toru SATO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/06/21
      Vol:
    E99-B No:12
      Page(s):
    2583-2591

    The design and performance evaluation is presented of a partially adaptive array that suppresses clutter from low elevation angles in atmospheric radar observations. The norm-constrained and directionally constrained minimization of power (NC-DCMP) algorithm has been widely used to suppress clutter in atmospheric radars, because it can limit the signal-to-noise ratio (SNR) loss to a designated amount, which is the most important design factor for atmospheric radars. To suppress clutter from low elevation angles, adding supplemental antennas that have high response to the incoming directions of clutter has been considered to be more efficient than to divide uniformly the high-gain main array. However, the proper handling of the gain differences of main and sub-arrays has not been well studied. We performed numerical simulations to show that using the proper gain weighting, the sub-array configuration has better clutter suppression capability per unit SNR loss than the uniformly divided arrays of the same size. The method developed is also applied to an actual observation dataset from the MU radar at Shigaraki, Japan. The properly gain-weighted NC-DCMP algorithm suppresses the ground clutter sufficiently with an average SNR loss of about 1 dB less than that of the uniform-gain configuration.

  • A 60 GHz Hybrid Analog/Digital Beamforming Receiver with Interference Suppression for Multiuser Gigabit/s Radio Access

    Koji TAKINAMI  Hiroyuki MOTOZUKA  Tomoya URUSHIHARA  Masashi KOBAYASHI  Hiroshi TAKAHASHI  Masataka IRIE  Takenori SAKAMOTO  Yohei MORISHITA  Kenji MIYANAGA  Takayuki TSUKIZAWA  Noriaki SAITO  Naganori SHIRAKATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    856-865

    This paper presents a 60 GHz analog/digital beamforming receiver that effectively suppresses interference signals, targeting the IEEE 802.11ad/WiGig standard. Combining two-stream analog frontends with interference rejection digital signal processing, the analog beamforming steers the antenna beam to the desired direction while the digital beamforming provides gain suppression in the interference direction. A prototype has been built with 40 nm CMOS analog frontends as well as offline baseband digital signal processing. Measurements show a 3.1 dB EVM advantage over conventional two-stream diversity during a packet collision situation.

  • A Varactor-Based All-Digital Multi-Phase PLL with Random-Sampling Spur Suppression Techniques

    Chia-Wen CHANG  Kai-Yu LO  Hossameldin A. IBRAHIM  Ming-Chiuan SU  Yuan-Hua CHU  Shyh-Jye JOU  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:4
      Page(s):
    481-490

    This paper presents a varactor-based all-digital phase-locked loop (ADPLL) with a multi-phase digitally controlled oscillator (DCO) for near-threshold voltage operation. In addition, a new all-digital reference spur suppression (RSS) circuit with multiple phases random-sampling techniques to effectively spread the reference clock frequency is proposed to randomize the synchronized DCO register behavior and reduce the reference spur. Because the equivalent reference clock frequency is reserved, the loop behavior is maintained. The area of the proposed spur suppression circuit is only 4.9% of the ADPLL (0.038 mm2). To work reliably at the near-threshold region, a multi-phase DCO with NMOS varactors is presented to acquire precise frequency resolution and high linearity. In the near-threshold region (VDD =0.52 V), the ADPLL only dissipates 269.9 μW at 100 MHz output frequency. It has a reference spur of -52.2 dBc at 100 MHz output clock frequency when the spur suppression circuit is deactivated. When the spur suppression circuit is activated, the ADPLL shows a reference spur of -57.3 dBc with the period jitter of 0.217% UI.

  • Impact and High-Pitch Noise Suppression Based on Spectral Entropy

    Arata KAWAMURA  Noboru HAYASAKA  Naoto SASAOKA  

     
    PAPER-Engineering Acoustics

      Vol:
    E99-A No:4
      Page(s):
    777-787

    We propose an impact and high-pitch noise-suppression method based on spectral entropy. Spectral entropy takes a large value for flat spectral amplitude and a small value for spectra with several lines. We model the impact noise as a flat spectral signal and its damped oscillation as a high-pitch periodic signal consisting of spectra with several lines. We discriminate between the current noise situations by using spectral entropy and adaptively change the noise-suppression parameters used in a zero phase-based impact-noise-suppression method. Simulation results show that the proposed method can improve the perceptual evaluation of the speech quality and speech-recognition rate compared to conventional methods.

  • Sea Clutter Suppression and Weak Target Signal Enhancement Using an Optimal Filter

    Jinfeng HU  Huanrui ZHU  Huiyong LI  Julan XIE  Jun LI  Sen ZHONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:1
      Page(s):
    433-436

    Recently, many neural networks have been proposed for radar sea clutter suppression. However, they have poor performance under the condition of low signal to interference plus noise ratio (SINR). In this letter, we put forward a novel method to detect a small target embedded in sea clutter based on an optimal filter. The proposed method keeps the energy in the frequency cell under test (FCUT) invariant, at the same time, it minimizes other frequency signals. Finally, detect target by judging the output SINR of every frequency cell. Compared with the neural networks, the algorithm proposed can detect under lower SINR. Using real-life radar data, we show that our method can detect the target effectively when the SINR is higher than -39dB which is 23dB lower than that needed by the neural networks.

  • Mutual Interference Suppression Using Clipping and Weighted-Envelope Normalization for Automotive FMCW Radar Systems

    Jung-Hwan CHOI  Han-Byul LEE  Ji-Won CHOI  Seong-Cheol KIM  

     
    PAPER-Sensing

      Vol:
    E99-B No:1
      Page(s):
    280-287

    With extensive use of automotive radars, mutual interference between radars has become a crucial issue, since it increases the noise floor in the frequency domain triggering frequent false alarms and unsafe decision. This paper introduces a mathematical model for a frequency-modulated continuous-wave (FMCW) radar in interfering environments. In addition, this paper proposes a time-domain interference suppression method to provide anti-interference capability regardless of the signal-to-interference ratio. Numerical results are presented to verify the performance of a 77GHz FMCW radar systme with the proposed method in interference-rich environments.

  • High CM Suppression Wideband Balanced BPF Using Dual-Mode Slotline Resonator

    Lina BAI  Danna YING  

     
    PAPER-Measurement Technology

      Vol:
    E98-A No:10
      Page(s):
    2171-2177

    A novel high common-mode (CM) suppression wideband balanced passband filter (BPF) is proposed using the stub centrally loaded slotline resonators (SCLSR) which have two resonant frequencies (odd- and even-modes) in the desired passband. The odd-mode resonant frequency of the slotline SCLSR can be flexibly controlled by the stub, whereas the even-mode one is fixed. Meanwhile, a transmission zero near the odd-mode resonant frequency can be generated due to the main path signal counteraction. First, the wideband single-ended BPF and corresponding balanced BPF are designed based on the slotline SCLSR with the parallel coupled microstrip line input/output (I/O). Ultra wideband high CM suppression that can be achieved for the slotline resonator structure has no resonant mode under CM excitation. Furthermore, by folding the parallel coupled microstrip line I/O, the source-load coupling is effectively decoupled to improve the CM suppression within the passband. The high suppression wideband balanced BPF is fabricated and measured, respectively. Good agreement between simulation and measurement results is obtained.

  • Theory and Measurement of Reset Noise Suppression in CTIA Readout Circuits

    Makoto AKIBA  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E98-C No:8
      Page(s):
    899-902

    The expressions for the reset noise in capacitive-transimpedance-amplifier (CTIA) readout circuits are theoretically derived and confirmed experimentally. The contributions to the reset noise from the thermal current and amplifier noise are considered. The thermal reset noise is found to depend only on the feedback capacitance among the circuit parameters.

  • Multicell Distributed Beamforming Based on Gradient Iteration and Local CSIs

    Zijia HUANG  Xiaoxiang WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1058-1064

    In this paper, the multicell distributed beamforming (MDBF) design problem of suppressing intra-cell interference (InCI) and inter-cell interference (ICI) is studied. To start with, in order to decrease the InCI and ICI caused by a user, we propose a gradient-iteration altruistic algorithm to derive the beamforming vectors. The convergence of the proposed iterative algorithm is proved. Second, a metric function is established to restrict the ICI and maximize cell rate. This function depends on only local channel state information (CSI) and does not need additional CSIs. Moreover, an MDBF algorithm with the metric function is proposed. This proposed algorithm utilizes gradient iteration to maximize the metric function to improve sum rate of the cell. Finally, simulation results demonstrate that the proposed algorithm can achieve higher cell rates while offering more advantages to suppress InCI and ICI than the traditional ones.

  • 3-Dimensional Imaging and Motion Estimation Method of Multiple Moving Targets for Multi-Static UWB Radar Using Target Point and Its Normal Vector

    Ryo YAMAGUCHI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E97-B No:12
      Page(s):
    2819-2829

    Radar systems using ultra-wideband (UWB) signals have definitive advantages in high range resolution. These are suitable for accurate 3-dimensional (3-D) sensing by rescue robots operating in disaster zone settings, where optical sensing is not applicable because of thick smog or high-density gas. For such applications, where no a priori information of target shape and position is given, an accurate method for 3-D imaging and motion estimation is strongly required for effective target recognition. In addressing this issue, we have already proposed a non-parametric 2-dimensional (2-D) imaging method for a target with arbitrary target shape and motion including rotation and translation being tracked using a multi-static radar system. This is based on matching target boundary points obtained using the range points migration (RPM) method extended to the multi-static radar system. Whereas this method accomplishes accurate imaging and motion estimation for single targets, accuracy is degraded severely for multiple targets, due to interference effects. For a solution of this difficulty, this paper proposes a method based on a novel matching scheme using not only target points but also normal vectors on the target boundary estimated by the Envelope method; interference effects are effectively suppressed when incorporating the RPM approach. Results from numerical simulations for both 2-D and 3-D models show that the proposed method simultaneously achieves accurate target imaging and motion tracking, even for multiple moving targets.

  • Nonlinear Acoustic Echo Suppression Based on Spectrum Selection Using the Amount of Linear Echo Cancellation

    Takashi SUDO  Hirokazu TANAKA  Chika SUGIMOTO  Ryuji KOHNO  

     
    PAPER

      Vol:
    E97-A No:11
      Page(s):
    2139-2146

    Hands-free communications between cellular phones must be robust enough to withstand echo-path variation, and highly nonlinear echoes must be suppressed at low cost, when acoustic echo cancellation or suppression is applied to them. This paper proposes a spectrum-selective nonlinear echo suppression (SS-ES) approach as a solution to these issues. SS-ES is characterized by the selection of either a spectrum of the residual signal from an adaptive filter or a spectrum of the sending input signal depending on the amount of linear echo cancellation in an adaptive filter. Compared to conventional methods, the objective evaluation results of the SS-ES approach show an improvement of approximately 0.8-2.2dB, 0.23-2.39dB, and 0.26-0.50 in average echo return loss enhancement (ERLE), average root-mean-square log-spectral distortion (RMS-LSD), and the perceptual evaluation of speech quality (PESQ) value, respectively, under echo-path variation and double-talk conditions.

  • Multiplexing Technique of Radio-on-Fiber Signals Using Chromatic Dispersion Control

    Kensuke IKEDA  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    163-170

    In this paper, a novel interference suppression technique from added RoF (Radio-on-Fiber) system is proposed. In general RoF system, received RF (radio frequency) signal intensity is periodically varied depending on chromatic dispersion that is known as fading phenomenon. In proposed technique null points of this fading phenomenon are intentionally applied to minimize signal interferences. This technique can realize two types of multiplexing RoF signal. In the first configuration, a single optical carrier is modulated twice using two optical modulators connected in series. In second configuration, new RoF signal is added to the existing network using individual light source. Multiplexing RoF signals of 10 GHz-band with data of 30 Mbps 64QAM is experimentally demonstrated.

  • Suppression of Polarization Dependent Loss by Using a Single Birefringent Fiber for Low-Coherence Signal

    Mitsuhiro TATEDA  Kei OZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:7
      Page(s):
    2302-2305

    Some optical components have polarization dependent loss (PDL), which degrades the performance of optical measurement systems. Various PDL suppression methods have been proposd, most of them have rather complicated structures. In this paper we propose a new simple method for PDL suppression, in which a single birefringent element is concatenated to a PDL device with their birefringent axes offset by π/4. The effectiveness of the proposed method is verified by experiments, that is, polarization dependent loss variation amplitude V of a device relative to its average loss is reduced from 90% to 2% by using a 2 m long PANDA fiber for an LED light source whose central wavelength λ0 and spectral width Δλ are 847 nm and 55 nm, respectively. Furthermore, for an SLD light source with λ0=1539 nm and Δλ=71 nm, V as much as 80% is reduced to 2% by using the same PANDA fiber.

  • A Robust Cooperative Spectrum Sensing Based on Kullback-Leibler Divergence

    Hiep VU-VAN  Insoo KOO  

     
    LETTER

      Vol:
    E95-B No:4
      Page(s):
    1286-1290

    Reliable detection of the licensed user signal is a pre-requirement for avoiding interference to the licensed user in a CR network. Cooperative spectrum sensing (CSS) is able to offer improved sensing performance compared to individual sensing. In this paper, we propose a robust soft combination rule based on the Kullback-Leibler divergence (KL-divergence) for CSS. The proposed scheme is able to obtain a similar sensing performance compared to that of maximum gain combination (MGC) without requiring signal to noise ratio (SNR) information. In addition, the proposed scheme protects the sensing process against common types of malicious users without a malicious user identification step. The simulation results demonstrate the effectiveness of the proposed scheme.

21-40hit(140hit)