The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surface impedance(7hit)

1-7hit
  • Estimation of Reflection Coefficient and Surface Impedance from Absolute Values of the Near Field with Periodic Change

    Michinari SHIMODA  Masazumi MIYOSHI  Kazunori MATSUO  Yoshitada IYAMA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    92-101

    An inverse scattering problem of estimating the reflection coefficient and the surface impedance from two sets of absolute values of the near field with periodic change is investigated. The problem is formulated in terms of a nonlinear simultaneous equations which is derived from the relation between the two sets of absolute values and the field defined by a finite summation of the modal functions by applying the Fourier analysis. The reflection coefficient is estimated by solving the equations by Newton's method through the successive algorithm with the increment of the number of truncation in the summation one after another. Numerical examples are given and the accuracy of the estimation is discussed.

  • Active Frequency Selective Surfaces Using Incorporated PIN Diodes

    Kihun CHANG  Sang il KWAK  Young Joong YOON  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:12
      Page(s):
    1917-1922

    In this paper, active frequency selective surfaces (FSS) having a squared aperture with a metal plate loading are described. Active FSS elements using switched PIN diodes are discussed with an equivalent circuit model. A unit cell consists of a square aperture element with metal island loading and one PIN diode placed at the upper gap, considering the vertical polarization. The electromagnetic properties of the active FSS structure are changed by applying dc bias to the substrate, and they can be estimated by the equivalent circuit model of the FSS structure and PIN diode. This active FSS design enables transmission to be switched on or off at 2.3 GHz, providing high transmission when the diodes are in an off state and high isolation when the diodes are on. The equivalent circuit model in the structure is investigated by analyzing transmission and reflection spectra. Measurements on active FSS are compared with numerical calculations. The experimentally observed frequency responses are also scrutinized.

  • Microwave Properties of Sapphire Resonators with a Gap and Their Applicability for Measurements of the Intrinsic Surface Impedance of Thin Superconductor Films

    Sang Young LEE  Jae Hun LEE  Woo Il YANG  John H. CLAASSEN  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    132-139

    A dielectric resonator with a gap between the top plate and the rest has been useful for measuring the penetration depth (λ) of superconductor films, a parameter essential for obtaining the intrinsic microwave surface resistance (Rs) of thin superconductor films. We investigated effects of a gap on the microwave properties of TE0ml-mode sapphire resonators with a gap between the top plate and the rest of the resonator. Regardless of a 10 µm-gap in TE0ml-mode sapphire resonators, variations of the TE0ml-mode resonant frequency on temperature (Δf0) as well as TE0ml-mode unloaded Q remained almost the same due to lack of axial currents inside the resonator and negligible radiation effects. The λ of YBa2Cu3O7-δ (YBCO) films obtained from a fit to the temperature-dependent Δf0 appeared to be 195 nm at 0 K and 19.3 GHz, which was well compared with the corresponding value of 193 nm at 10 kHz measured by the mutual inductance method. The intrinsic Rs of YBCO films on the order of 1 mΩ, and the tan δ of sapphire on the order of 10-8 at 15 K and 40 GHz could be measured simultaneously using sapphire resonators with a 10 µm-gap.

  • Estimation of Surface Impedance for Inhomogeneous Half-Space Using Far Fields

    Michinari SHIMODA  Masazumi MIYOSHI  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2199-2207

    An inverse scattering problem of estimating the surface impedance for an inhomogeneous half-space is investigated. By virtue of the fact that the far field representation contains the spectral function of the scattered field, complex values of the function are estimated from a set of absolute values of the far field. An approximate function for the spectral function is reconstructed from the estimated complex values by the least-squares sense. The surface impedance is estimated through calculating the field on the surface of the half-space expressed by the inverse Fourier transform. Numerical examples are given and the accuracy of the estimation is discussed.

  • The Finite Difference Time Domain Method for Sinusoidal Electromagnetic Fields

    Md. Osman GONI  Masao KODAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:3
      Page(s):
    823-830

    The FDTD method needs Fourier analysis to obtain the fields of a single frequency. Furthermore, the frequency spectra of the fields used in the FDTD method ordinarily have wide bands, and all the fields in FDTD are treated as real numbers. Therefore, if the permittivity ε and the permeability µ of the medium depend on frequency, or if the surface impedance used for the surface impedance boundary condition (SIBC) depends on the frequency, the FDTD method becomes very complicated because of convolution integral. In the electromagnetic theory, we usually assume that the fields oscillate sinusoidally, and that the fields and ε and µ are complex numbers. The benefit of introduction of the complex numbers is very extensive. As we do in the usual electromagnetic theory, the authors assume that the fields in FDTD oscillate sinusoidally. In the proposed FDTD, the fields, ε, µ and the surface impedances for SIBC are all treated as the complex numbers. The proposed FDTD method can remove the above-mentioned weak points of the conventional FDTD method.

  • Phenomenological Description of Microwave Characteristics of Low-Tc Superconductor by Three-Fluid Model

    Yoshio KOBAYASHI  Hiromichi YOSHIKAWA  Seiichiro ONO  

     
    PAPER

      Vol:
    E80-C No:10
      Page(s):
    1269-1274

    It is shown that a three-fluid model, which was successfully introduced to explain microwave characteristics of high-Tc superconductors phenomenologically, is suit also to explain those of low-Tc superconductors. In this model, the two contributions of a residual normal electron, in addition to a super and a normal electron in the two-fluid model, and of the temperature (T) dependence of momentum relaxation time τ for the two normal electrons are taken into account. Measured results of the T dependence of surface resistance Rs for a Nb film with critical temperature Tc9.2K agree very well with an Rs curve calculated using the present model, where a residual surface resistance at T0K, Rso, and the T dependence of τ were determined using the surface reactance at 0K Xso37.6mΩ calculated using the BCS theory to fit a calculated Rs curve with the measured values as a function of T. Furthermore, microwave characteristics predicted from the BCS theory cannot be explained phenomenologically using the conventional two-fluid model. This difficulty can be solved by using an improved two-fluid model, called the two-fluid (τ) model, where the T dependence of τ is taken into account. Finally the frequency dependence of Rs calculated for the Nb film is f1.9 for the BCS theory and f2.0 for the three-fluid (τ) model on the assumption of the frequency independence of τ.

  • A Method for Measuring Surface Impedance of Superconductor and Dielectric Characteristics of Substrate by Using Strip Line Resonator

    Akira TAKETOMI  Kunio SAWAYA  Saburo ADACHI  Shigetoshi OHSHIMA  Norihiko YAOI  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1234-1241

    A method using the microstrip line resonator is applied to measurements of the dielectric properties of a substrate and the surface resistance of a conducting strip line versus the frequency as well as the temperature. The variational expressions for the capacitance per unit length of several microstrip lines such as an inverted microstrip line and multi-layer microstrip lines are derived. The expression involves an integral along a semi-infinite interval, but the numerical integration is very easy. Effects of a buffer layer deposited on the substrate are investigated by using a multi-layer microstrip line model. The permittivity and the loss tangent of several dielectric materials are measured by the MSL and the IMSL or the multi-layer microstrip resonator. The measured surface resistance of copper and iron is also presented to show the validity of the present method. The surface resistance of a BSCCO thick film is also presented.