The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surface modification(3hit)

1-3hit
  • Polymer Surface Modification Due to Active Oxygen Species and Ultraviolet Light Exposures

    Kazuki HOSOYA  Ryo WAKAYAMA  Kei OYA  Satoru IWAMORI  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    137-140

    Active oxygen species (AOS), e.g., excited singlet oxygen atom [O(1D)], excited singlet oxygen molecules (1O2), ground-state oxygen atom [O(3P)] and hydroxyl radical (OH), generated under two wavelengths (185 and 254 nm) of ultraviolet (UV) light were exposed to polyethylene (PE), polypropylene (PP) and polystyrene (PS) sheets. We investigated effects of the AOS exposure on the surface modification of these polymer sheets. Nonwoven sheet was used for the surface modification to eliminate an effect of the UV light irradiation. Although hydrophobicity of the PE and PP surfaces was maintained, the PS was changed into the hydrophilic surface.

  • Quantitative Characterization of Surface Amino Groups of Plasma-Polymerized Films Prepared from Nitrogen-Containing Monomers for Bioelectronic Applications

    Hitoshi MUGURUMA  

     
    PAPER-Organic Molecular Electronics

      Vol:
    E91-C No:6
      Page(s):
    963-967

    The surface amino groups of plasma-polymerized films prepared from various nitrogen-containing monomers were quantitatively characterized for bioelectronic and biomedical applications. X-ray photoelectron spectroscopy (XPS) measurements were conducted on two kinds of surfaces: pristine surfaces of plasma-polymerized film prepared using various nitrogen-containing monomers, and theirs surfaces whose amino groups had been derivatized by a primary-amine-selective reagent carrying an XPS label. The XPS data showed that the maximum surface density of amino groups for this film was 8.41013 cm-2. Amino groups constituted 14-64% of all surface nitrogen atoms (NH/N), depending on the monomer used.

  • Synchrotron Radiation Induced Direct Projection Patterning of Aluminum on Si and SiO2 Surfaces

    Fumihiko UESUGI  Iwao NISHIYAMA  

     
    PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    47-54

    A new direct projection patterning technique of aluminum using synchrotron radiation (SR) is proposed. It is based on the thermal reaction control effect of SR excitation. In the case of the Si surface, pure thermal growth is possible at 200, however, this growth is suppressed perfectly by SR irradiation. On the other hand, Al growth on the SiO2 surface is impossible at the same temperature thermally, however, SR has an effect to initiate thermal reaction. Both new effects of SR, suppression and initiation, are clarified to be caused by atomic order level thin layers formed from CVD gases by SR excitation on the surfaces. By using these effects, the direct inverse and normal projection patterning of Al are successfully demonstrated.