1-7hit |
Shinji KAWAMURA Tomoaki TSUMURA
Many mobile systems need to achieve both high performance and low memory usage, and the total performance of such the systems can be largely affected by the effectiveness of GC. Hence, the recent popularization of mobile devices makes the GC performance play one of the important roles on the wide range of platforms. The response performance degradation caused by suspending all processes for GC has been a well-known potential problem. Therefore, GC algorithms have been actively studied and improved, but they still have not reached any fundamental solution. In this paper, we focus on the point that the same objects are redundantly marked during the GC procedure implemented on DalvikVM, which is one of the famous runtime environments for the mobile devices. Then we propose a hardware support technique for improving marking routine of GC. We installed a set of tables to a processor for managing marked objects, and redundant marking for marked objects can be omitted by referring these tables. The result of the simulation experiment shows that the percentage of redundant marking is reduced by more than 50%.
Takashi IMAMICHI Hiroshi NAGAMOCHI
In this paper, we consider a collision detection problem of spheres which asks to detect all pairs of colliding spheres in a set of n spheres located in d-dimensional space. We propose a collision detection algorithm for spheres based on slab partitioning technique and a plane sweep method. We derive a theoretical upper bound on the time complexity of the algorithm. Our bound tells that if both the dimension and the maximum ratio of radii of two spheres are bounded, then our algorithm runs in O(n log n + K) time with O(n + K) space, where K denotes the number of pairs of colliding spheres.
Masao NAGANO Toshio ONODERA Mototaka SONE
A sweep spectrum analyzer has been improved over the years, but the fundamental method has not been changed before the 'Super Sweep' method appeared. The 'Super Sweep' method has been expected to break the limitation of the conventional sweep spectrum analyzer, a limit of the maximum sweep rate which is in inverse proportion to the square of the frequency resolution. The superior performance of the 'Super Sweep' method, however, has not been experimentally proved yet. This paper gives the experimental evaluation on the 'Super Sweep' spectrum analyzer, of which theoretical concepts have already been presented by the authors of this paper. Before giving the experimental results, we give complete analysis for a sweep spectrum analyzer and express the principle of the super-sweep operation with a complete set of equations. We developed an experimental system whose components operated in an optimum condition as the spectrum analyzer. Then we investigated its properties, a peak level reduction and broadening of the frequency resolution of the measured spectrum, by changing the sweep rate. We also confirmed that the experimental system satisfactorily detected the spectrum at least 30 times faster than the conventional method and the sweep rate was in proportion to the bandwidth of the base band signal to be analyzed. We proved that the 'Super Sweep' method broke the restriction of the sweep rate put on a conventional sweep spectrum analyzer.
Kunihiko SADAKANE Hiroshi IMAI
When we search from a huge amount of documents, we often specify several keywords and use conjunctive queries to narrow the result of the search. Though the searched documents contain all keywords, positions of the keywords are usually not considered. As a result, the search result contains some meaningless documents. It is therefore effective to rank documents according to proximity of keywords in the documents. This ranking is regarded as a kind of text data mining. In this paper, we propose two algorithms for finding documents in which all given keywords appear in neighboring places. One is based on plane-sweep algorithm and the other is based on divide-and-conquer approach. Both algorithms run in O(n log n) time where n is the number of occurrences of given keywords. We run the algorithms on a large collection of html files and verify its effectiveness.
Lu-Tang WANG Koichi IIYAMA Ken-ichi HAYASHI
We propose and demonstrate an excellent linearly frequency-swept laser diode (LD) for sensing system utilizing frequency-moduleted continuous-wave (FMCW) technique. In order to linearly sweep the optical frequency, we adopt a reference interferometer and an electric phase comparator. The interference beat signal of the reference interferometer is phase-compared with an external reference rectangular signal having a fixed frequency near the interference beat signal frequency by a lock-in amplifier. The error signal from the lock-in amplifier is fed back to the modulating signal of the injection current of the LD. Thus, a phase-locked loop composed of optical and electric circuits can be established, and the beat signal frequency is locked to the frequency of the reference signal. The optical frequency of the LD is, therefore, excellently linearly swept in time. In order to experimentally confirm the linearlity of the proposed method, we apply this light source to the FMCW reflectometry. Resultingly, the improvement of the linearity is estimated to be about 10 dB. And the theoretically limited spatial resolution of the FMCW reflectometry is achieved.
Toru AWASHIMA Masao SATO Tatsuo OHTSUKI
This paper presents an optimal constraint graph generation algorithm for graph-based one-dimensional layout compaction. The first published algorithm for this problem was the shadow-propagation algorithm. However, without sophisticated implementation of a shadow-front, complexity of the algorithm could fall into O(n2), where n is the number of layout objects. Although our algorithm, called the enhanced plane-sweep based graph generation algorithm, is an extension of the shadow-propagation algorithm, such a drawback is resolved by introducing an enhanced plane-sweep technique. The algorithm maintains multiple shadow-fronts simultaneously by storing them in a work-list called previous-boundary. Since a balanced search tree is selected for implementation of the worklist, total complexity of the algorithm is O(n log n) which is optimal. Experimental results show that the enhanced plane-sweep based graph generation algorithm runs in almost linear time with respect to the number of layout objects and is faster than the perpendicular plane-sweep algorithm which is also optimal in terms of time complexity.
Yasutaka ICHIHASHI Yoshio NAGAKI Takeshi TSUKAMOTO Youichi TAMURA
A method for sweeping frequency ranges of over 130GHz within a tuning range of 30nm, without mode hopping, has been realized. The optical frequency is swept with a fine translation-rotation grating drive which uses a new, simplified operation method and a thermally controlled semiconductor laser system.